Positive Definite Matrix
Definition
Definition. Inequality for vector
- \(z = (z_{1}, \ldots, z_{N})^{\mathrm{T}} \in \mathbb{R}^{N}\),
$z$ is said to be null vector if \(\forall i\), \(z_{i} = 0\). This is equivalent to \(z \ge 0\) and $z \le 0$.
Definition. positive definite matrix
- \(M\),
- $N \times N$
$M$ is positive definite matrix (p.s.d. for short) if
\[z \in \mathbb{R}^{N} \setminus \{0\}, \ z^{\mathrm{T}}Mz > 0\]We denote \(\mathcal{S}_{n}^{+}\) as a set of all p.d.
Definition. nonnegative definite.
- \(M\),
- $N \times N$
$M$ is nonnegative definite matrix if
\[z \in \mathbb{R}^{N}, \ z^{\mathrm{T}}Mz \ge 0\]We denote \(\mathcal{S}_{n}^{\ge 0}\) as a set of all nonnegative definite.
Definition. positive semidefinite.
- \(M\),
- $N \times N$
$M$ is positive semidefinite matrix if $M$ is nonnegative positve matrix but not positve definite. That is, there are some nonnull vectors $z$ such that \(z^{\mathrm{T}}Mz = 0\)
We denote \(\mathcal{S}_{n}\) as a set of all p.s.d.
Proposition1 equivalence
The definition of p.d. are equivalent to
\[\begin{equation} \exists r > 0, \ \text{ s.t. } \ \forall z \in B_{0, r} \setminus \{0\}, \ z^{\mathrm{T}}Mz > 0 . \end{equation}\]where $B_{0, r}$ is unit ball centered at 0,
\[a \in \mathbb{R}^{n}, \ r \in > 0, \ B_{a, r} := \{ y \in \mathbb{R}^{n} \mid \|a - y \| \le r \} .\]proof
For any \(z \in \mathbb{R}^{n} \setminus \{0\}\), letting \(t := \max_{i}|z_{i}|\), $x := z / t$, $x \in B_{0, 1}$ and $z = tx$, that is,
\[\forall z \in \mathbb{R}^{n} \setminus \{0\}, \ \exists t > 0, \ \exists x \in B_{0, 1} \setminus \{0\} \text{ s.t. } z = xt .\]Thus,
\[\begin{eqnarray} & & \forall x \in B_{1} \setminus \{0\}, \ x^{\mathrm{T}}Mx > 0 \nonumber \\ & \Rightarrow & \forall t > 0, \ \forall x \in B_{1} \setminus \{0\}, \ (tx)^{\mathrm{T}}M(tx) > 0 \nonumber \end{eqnarray} .\]Coverse is obvious.
Corollary2 equivalence
The definition of p.d. are equivalent to
\[\begin{equation} \exists r > 0, \ \exists a \in \mathbb{R}^{n}, \ \text{ s.t. } \ \forall z \in B_{a, r} \setminus \{0\}, \ z - a \neq 0, \ (z - a)^{\mathrm{T}}M(z - a) > 0 . \end{equation}\]proof
$z - a \in B_{0, r}$ if and only if $z \in B_{a, r}$. The result is immediate consequence of the previous proposition.
Remark.
- If $M$ is positve definite, then $M$ is nonnegative definite.
- If $M$ is positve semidefinite, then $M$ is nonnegative definite.
- Since \(x^{\mathrm{T}}I_{n}x = \sum_{i=1}^{n}x_{i}^{2}\), \(I_{n}\) is positive definite.
- Since \(x^{\mathrm{T}}J_{n}x = (\sum_{i=1}^{n}x_{i})^{2}\), \(J_{n}\) is nonnegative definite.
- But not positive definite so that $J$ is positive semidefinite.
Definitions. nonpositive definite, negative definite, negative semidefinite
- \(M\),
- $n \times n$
Lemma1
- \(A := (a_{j}^{i})\),
- $n \times n$ matrix
- \(B := (b_{j}^{i})\),
- $n \times n$ matrix
Then
\[\begin{eqnarray} & & \forall x, \ x^{\mathrm{T}}Ax = x^{\mathrm{T}}Bx \nonumber \\ & \Leftrightarrow & \forall i = 1, \ldots, n, \ a_{i}^{i} = b_{i}^{i} , \quad \nonumber \\ & & \forall j, k = 1, \ldots, n, \ a_{k}^{j} + a_{j}^{k} = b_{k}^{j} + b_{j}^{k} \nonumber \end{eqnarray}\]proof.
($\Rightarrow$) Let \(e_{i}\) be $i$-th unit vector. By assumption, we observe that
\[a_{i}^{i} = e_{i}^{\mathrm{T}}Ae_{i} = e_{i}^{\mathrm{T}}Be_{i} = b_{i}^{i} .\]Moreover let \(e_{i}\), \(e_{j}\) be $i$-th and $j$-th unit vector.
\[\begin{eqnarray} a_{i}^{i} + a_{j}^{i} + a_{i}^{j} + a_{j}^{j} & = & e_{i}^{\mathrm{T}} A e_{i} + e_{j}^{\mathrm{T}} A e_{i} + e_{i}^{\mathrm{T}} A e_{j} + e_{j}^{\mathrm{T}} A e_{j} \nonumber \\ & = & (e_{i} + e_{j})^{\mathrm{T}} A e_{i} + (e_{i} + e_{j})^{\mathrm{T}} A e_{j} \nonumber \\ & = & (e_{i} + e_{j})^{\mathrm{T}} A (e_{i} + e_{j}) \nonumber \\ & = & (e_{i} + e_{j})^{\mathrm{T}} B (e_{i} + e_{j}) \nonumber \\ & = & b_{i}^{i} + b_{j}^{i} + b_{i}^{j} + b_{j}^{j} \nonumber \end{eqnarray}\]($\Leftarrow$) Let $x$ be arbitrary vector. Since $x$ can be written $x = \sum_{i=1}^{n}x_{i}e_{i}$,
\[\begin{eqnarray} x^{\mathrm{T}}Ax & = & (\sum_{i=1}^{n} x_{i}e_{i})^{\mathrm{T}} A \sum_{i=1}^{n} x_{i}e_{i} \nonumber \\ & = & \sum_{i=1}^{n} x_{i}^{2}e_{i}^{\mathrm{T}}Ae_{i} + \sum_{i \neq j}^{n} x_{i} x_{j} e_{i}^{\mathrm{T}} A e_{j} \nonumber \\ & = & \sum_{i=1}^{n} x_{i}^{2}a_{i}^{i} + \sum_{i = 1}^{n} \sum_{j > i}^{n} \left( x_{i} x_{j} a_{j}^{i} + x_{j} x_{i} a_{i}^{j} \right) \nonumber \\ & = & \sum_{i=1}^{n} x_{i}^{2}b_{i}^{i} + \sum_{i = 1}^{n} \sum_{j > i}^{n} \left( x_{i} x_{j} b_{j}^{i} + x_{j} x_{i} b_{i}^{j} \right) \nonumber \\ & = & x^{\mathrm{T}}Bx \nonumber \end{eqnarray}\]Lemma2
- \(D := \mathrm{diag}(d_{1}, \ldots, d_{n})\),
- diagonal matrix
Then
- (1). $D$ is nonegative definite if and only if \(d_{1}, \ldots, d_{n}\) are nonnegative.
- (2). $D$ is positive definite if and only if \(d_{1}, \ldots, d_{n}\) are positve.
- (3). $D$ is positive semidefinite if and only if \(d_{1}, \ldots, d_{n}\) are nonnegative and \(\mathrm{card}(\{i \mid d_{i} = 0\}) > 0\).
proof.
These are obvious from the following calculation:
\[x^{\mathrm{T}}Dx = \sum_{i=1}^{n} d_{i}x_{i}^{2} .\]Lemma3
- \(A \in \mathbb{R}^{n \times n}\),
- symmetric
- nonnegative definite and nonpositive definite matrix
Then $M$ is null matrix.
proof.
For every vector $x \in \mathbb{R}^{n}$,
\[x^{\mathrm{T}}Ax \ge 0, \ x^{\mathrm{T}}Ax \le 0,\]Then \(x^{\mathrm{T}}Ax = 0\). Since $A$ is symmetric so that by lemma1 $A = 0$.
Lemma4.
- $k \in \mathbb{N}$,
- $A \in \mathbb{R}^{n \times n}$,
- positve definite (positve semidefinite)
- $B \in \mathbb{R}^{n \times n}$,
- positve definite (positve semidefinite)
Then
- (1) If $A$ is positve definite (positve semidefinite), $kA$ is positve definite (resp. positve semidefinite).
- (2) If $A$ and $B$ are nonnegative definite, $A + B$ is nonnegative definite.
- (3) If $A$ is positive definite and $B$ is nonnegative definite, $A + B$ is positive definite.
proof.
\[\begin{eqnarray} x^{\mathrm{T}}(kA)x & = & kx^{\mathrm{T}}Ax > 0 \nonumber \end{eqnarray}\]and
\[\begin{eqnarray} x^{\mathrm{T}}(A + B)x & = & x^{\mathrm{T}}Ax + x^{\mathrm{T}}Bx > 0 . \nonumber \end{eqnarray}\]Lemma5
- $A \in \mathbb{R}^{n \times n}$
- matrix
- $B \in \mathbb{R}^{n \times n}$
- matrix
If $B + B^{\mathrm{T}} = A + A^{\mathrm{T}}$, then
\[\begin{eqnarray} A \in \mathcal{S}_{n}^{+} & \Leftrightarrow & B \in \mathcal{S}_{n}^{+} \nonumber \\ A \in \mathcal{S}_{n} & \Leftrightarrow & B \in \mathcal{S}_{n} \nonumber \\ A \in \mathcal{S}_{n}^{\ge 0} & \Leftrightarrow & B \in \mathcal{S}_{n}^{\ge 0} \end{eqnarray}\]proof.
It safies to show one of neccecity and sufficiency. Suppose that \(A \in \mathcal{S}_{n}\). Since \(A + A^{\mathrm{T}} = (a_{j}^{i} + a_{i}^{j})\),
\[\begin{eqnarray} & & A + A^{\mathrm{T}} = B + B^{\mathrm{T}} \nonumber \\ & \Leftrightarrow & \forall i = 1, \ldots, n, \ a_{i}^{i} = b_{i}^{i} , \quad \nonumber \\ & & \forall j, k = 1, \ldots, n, \ a_{k}^{j} + a_{j}^{k} = b_{k}^{j} + b_{j}^{k} . \nonumber \end{eqnarray}\]Then applying lemma1 we obtain \(x^{\mathrm{T}}Ax = x^{\mathrm{T}}Bx\).
Lemma6
- $A$
- positive definite matrix
Then $A$ is nonsingular.
proof.
We will prove that by contradiction. Suppose $A$ is singular. Then we have $\exists x \in \mathbb{R}^{n}$ such that $Ax = 0$ and $x$ is a nonnull vector.. This implies
\[x^{\mathrm{T}}Ax = 0 .\]Hence $A$ is not positive definite.
Theorem7
- $A \in \mathbb{R}^{n \times n}$,
- matrix
- $P \in \mathbb{R}^{n \times m}$,
- matrix
Then
- (1) If $A$ is nonnegative definite, then \(P^{\mathrm{T}}AP\) is nonnegative definite.
- (2) If $A$ is nonnegative definite and \(\mathrm{rank}(P) < m\), then \(P^{\mathrm{T}}AP\) is positive semidefinite.
- (3) If $A$ is positive definite and \(\mathrm{rank}(P) = m\), then \(P^{\mathrm{T}}AP\) is positive definite.
proof.
proof of (1). Since $A$ is nonnegative definite, we observe
\[x^{\mathrm{T}}P^{\mathrm{T}}APx = (Px)^{\mathrm{T}}APx \ge 0 .\]proof of (2). By (1), $A$ is nonnegative definite so that $P^{\mathrm{T}}AP$ is nonnegative definite. For arbitrary matrix $B$, $C$, $\mathrm{rank}(AB) \le \mathrm{rank}(B)$. Hence
\[\mathrm{rank}(P^{\mathrm{T}}AP) \le \mathrm{rank}(P) < m .\]This implies $P^{\mathrm{T}}AP$ is singular so that $P^{\mathrm{T}}PA$ is not positive definite. Hence $P^{\mathrm{T}}AP$ is positive semidefinite matrix.
proof of (3). $A$ is positive definite so that $(Px)^{\mathrm{T}}APx = 0$ is attained only when $Px = 0$. Since $P$ is nonsigular, $Px = 0$ implies $x = 0$.
Corollary8
proof.
Proposition 9
- $x := (x^{i})_{i} \in \mathbb{R}^{n}$,
- $A, B \in \mathbb{R}^{n \times n}$,
- positive definite
- $y_{j} := (y_{j}^{i})_{i} \in \mathbb{R}^{n}$,
Then
(1) $xx^{\mathrm{T}}$ is positive definite.
(2) $A + B$ is positive definite.
(3) $\sum_{j=1}^{K}y_{j}y_{j}^{\mathrm{T}}$ is positive definite.
proof.
(1)
\[\begin{eqnarray} \forall y \in \mathbb{R}^{n}, \ y^{\mathrm{T}} xx^{\mathrm{T}} y & = & (x^{\mathrm{T}}y)^{\mathrm{T}} x^{\mathrm{T}} y \nonumber \\ & = & \|x^{\mathrm{T}}y\|^{2} \nonumber \\ & \ge & 0 . \nonumber \end{eqnarray}\]Moreover, if $y \neq 0$,
\[\begin{eqnarray} & & \|x^{\mathrm{T}}y\|^{2} = 0 \nonumber \\ & \Leftrightarrow & \forall i, \ x_{i} = 0 . \nonumber \end{eqnarray}\](2)
\[\begin{eqnarray} \forall y \in \mathbb{R}^{n} \setminus \{0\}, \ y^{\mathrm{T}} (A + B) y & = & y^{\mathrm{T}} A y + y^{\mathrm{T}} B y \nonumber \\ & > & 0 . \nonumber \end{eqnarray}\](3)
From (1), for all $j = 1, \ldots, K$, $y_{j}y_{j}^{\mathrm{T}}$ is positive definite. Then by (2) the some of $y_{j}y_{j}^{\mathrm{T}}$ is positive definite.
Proposition 10
- $A \in \mathbb{R}^{n \times n}$,
- positive semidefinite
- $B \in \mathbb{R}^{n \times n}$,
- positive semidefinite
Then
(1) there exists $C \in \mathbb{R}^{n \times n}$ such that
\[A = C C .\]We denote $C$ by $A^{-1}$.
(2) if $A - B$ is positive semidefinite, $A^{1/2} - B^{1/2}$ is semidefinite
proof
(1)
Since $A$ is symmetric, by proposition, $A$ is orthogonalizable.
\[\begin{eqnarray} A & = & V D V^{-1} \nonumber \\ D & = & \mathrm{diag}(\lambda_{1}(A), \ldots, \lambda_{n}(A)) \nonumber \\ V & = & (v_{1}, \ldots, v_{n}) \end{eqnarray}\]where $v_{i} \in \mathbb{R}^{n}$ is an eigenvector corresponding to the eigenvalue $\lambda_{i}(A)$. We define
\[\begin{eqnarray} D^{1/2} & := & \mathrm{diag}(\lambda_{1}(A)^{1/2}, \ldots, \lambda_{n}(A)^{1/2}) \nonumber \\ C^{1/2} & := & V D^{1/2} V^{-1} . \nonumber \end{eqnarray}\]Since $A$ is positive semidefinite, the square root of a eigenvalue exists.
\[\begin{eqnarray} C C & = & VD^{1/2}V^{-1} VD^{1/2}V^{-1} \nonumber \\ & = & VDV^{-1} \nonumber \\ & = & A . \nonumber \end{eqnarray}\](2)
\[\begin{eqnarray} A^{1/2} - B^{1/2} & = & V_{A}D_{A}^{1/2}V_{A}^{-1} - V_{B}D_{B}^{1/2}V_{B}^{-1} \nonumber \\ & = & \end{eqnarray}\]