View on GitHub

memo

Positive Definite Matrix

Positive Definite Matrix

Definition

Definition. Inequality for vector

\[\begin{eqnarray} z \ge 0 & \overset{\mathrm{def}}{\Leftrightarrow} & \forall i, \ z_{i} \ge 0 \nonumber \\ z \le 0 & \overset{\mathrm{def}}{\Leftrightarrow} & \forall i, \ z_{i} \le 0 \end{eqnarray}\]

$z$ is said to be null vector if \(\forall i\), \(z_{i} = 0\). This is equivalent to \(z \ge 0\) and $z \le 0$.

Definition. positive definite matrix

$M$ is positive definite matrix (p.s.d. for short) if

\[z \in \mathbb{R}^{N} \setminus \{0\}, \ z^{\mathrm{T}}Mz > 0\]

We denote \(\mathcal{S}_{n}^{+}\) as a set of all p.d.

Definition. nonnegative definite.

$M$ is nonnegative definite matrix if

\[z \in \mathbb{R}^{N}, \ z^{\mathrm{T}}Mz \ge 0\]

We denote \(\mathcal{S}_{n}^{\ge 0}\) as a set of all nonnegative definite.

Definition. positive semidefinite.

$M$ is positive semidefinite matrix if $M$ is nonnegative positve matrix but not positve definite. That is, there are some nonnull vectors $z$ such that \(z^{\mathrm{T}}Mz = 0\)

We denote \(\mathcal{S}_{n}\) as a set of all p.s.d.

Proposition1 equivalence

The definition of p.d. are equivalent to

\[\begin{equation} \exists r > 0, \ \text{ s.t. } \ \forall z \in B_{0, r} \setminus \{0\}, \ z^{\mathrm{T}}Mz > 0 . \end{equation}\]

where $B_{0, r}$ is unit ball centered at 0,

\[a \in \mathbb{R}^{n}, \ r \in > 0, \ B_{a, r} := \{ y \in \mathbb{R}^{n} \mid \|a - y \| \le r \} .\]

proof

For any \(z \in \mathbb{R}^{n} \setminus \{0\}\), letting \(t := \max_{i}|z_{i}|\), $x := z / t$, $x \in B_{0, 1}$ and $z = tx$, that is,

\[\forall z \in \mathbb{R}^{n} \setminus \{0\}, \ \exists t > 0, \ \exists x \in B_{0, 1} \setminus \{0\} \text{ s.t. } z = xt .\]

Thus,

\[\begin{eqnarray} & & \forall x \in B_{1} \setminus \{0\}, \ x^{\mathrm{T}}Mx > 0 \nonumber \\ & \Rightarrow & \forall t > 0, \ \forall x \in B_{1} \setminus \{0\}, \ (tx)^{\mathrm{T}}M(tx) > 0 \nonumber \end{eqnarray} .\]

Coverse is obvious.

$\Box$

Corollary2 equivalence

The definition of p.d. are equivalent to

\[\begin{equation} \exists r > 0, \ \exists a \in \mathbb{R}^{n}, \ \text{ s.t. } \ \forall z \in B_{a, r} \setminus \{0\}, \ z - a \neq 0, \ (z - a)^{\mathrm{T}}M(z - a) > 0 . \end{equation}\]

proof

$z - a \in B_{0, r}$ if and only if $z \in B_{a, r}$. The result is immediate consequence of the previous proposition.

$\Box$

Remark.

Definitions. nonpositive definite, negative definite, negative semidefinite

$\Box$

Lemma1

Then

\[\begin{eqnarray} & & \forall x, \ x^{\mathrm{T}}Ax = x^{\mathrm{T}}Bx \nonumber \\ & \Leftrightarrow & \forall i = 1, \ldots, n, \ a_{i}^{i} = b_{i}^{i} , \quad \nonumber \\ & & \forall j, k = 1, \ldots, n, \ a_{k}^{j} + a_{j}^{k} = b_{k}^{j} + b_{j}^{k} \nonumber \end{eqnarray}\]

proof.

($\Rightarrow$) Let \(e_{i}\) be $i$-th unit vector. By assumption, we observe that

\[a_{i}^{i} = e_{i}^{\mathrm{T}}Ae_{i} = e_{i}^{\mathrm{T}}Be_{i} = b_{i}^{i} .\]

Moreover let \(e_{i}\), \(e_{j}\) be $i$-th and $j$-th unit vector.

\[\begin{eqnarray} a_{i}^{i} + a_{j}^{i} + a_{i}^{j} + a_{j}^{j} & = & e_{i}^{\mathrm{T}} A e_{i} + e_{j}^{\mathrm{T}} A e_{i} + e_{i}^{\mathrm{T}} A e_{j} + e_{j}^{\mathrm{T}} A e_{j} \nonumber \\ & = & (e_{i} + e_{j})^{\mathrm{T}} A e_{i} + (e_{i} + e_{j})^{\mathrm{T}} A e_{j} \nonumber \\ & = & (e_{i} + e_{j})^{\mathrm{T}} A (e_{i} + e_{j}) \nonumber \\ & = & (e_{i} + e_{j})^{\mathrm{T}} B (e_{i} + e_{j}) \nonumber \\ & = & b_{i}^{i} + b_{j}^{i} + b_{i}^{j} + b_{j}^{j} \nonumber \end{eqnarray}\]

($\Leftarrow$) Let $x$ be arbitrary vector. Since $x$ can be written $x = \sum_{i=1}^{n}x_{i}e_{i}$,

\[\begin{eqnarray} x^{\mathrm{T}}Ax & = & (\sum_{i=1}^{n} x_{i}e_{i})^{\mathrm{T}} A \sum_{i=1}^{n} x_{i}e_{i} \nonumber \\ & = & \sum_{i=1}^{n} x_{i}^{2}e_{i}^{\mathrm{T}}Ae_{i} + \sum_{i \neq j}^{n} x_{i} x_{j} e_{i}^{\mathrm{T}} A e_{j} \nonumber \\ & = & \sum_{i=1}^{n} x_{i}^{2}a_{i}^{i} + \sum_{i = 1}^{n} \sum_{j > i}^{n} \left( x_{i} x_{j} a_{j}^{i} + x_{j} x_{i} a_{i}^{j} \right) \nonumber \\ & = & \sum_{i=1}^{n} x_{i}^{2}b_{i}^{i} + \sum_{i = 1}^{n} \sum_{j > i}^{n} \left( x_{i} x_{j} b_{j}^{i} + x_{j} x_{i} b_{i}^{j} \right) \nonumber \\ & = & x^{\mathrm{T}}Bx \nonumber \end{eqnarray}\]
$\Box$

Lemma2

Then

proof.

These are obvious from the following calculation:

\[x^{\mathrm{T}}Dx = \sum_{i=1}^{n} d_{i}x_{i}^{2} .\]
$\Box$

Lemma3

Then $M$ is null matrix.

proof.

For every vector $x \in \mathbb{R}^{n}$,

\[x^{\mathrm{T}}Ax \ge 0, \ x^{\mathrm{T}}Ax \le 0,\]

Then \(x^{\mathrm{T}}Ax = 0\). Since $A$ is symmetric so that by lemma1 $A = 0$.

$\Box$

Lemma4.

Then

proof.

\[\begin{eqnarray} x^{\mathrm{T}}(kA)x & = & kx^{\mathrm{T}}Ax > 0 \nonumber \end{eqnarray}\]

and

\[\begin{eqnarray} x^{\mathrm{T}}(A + B)x & = & x^{\mathrm{T}}Ax + x^{\mathrm{T}}Bx > 0 . \nonumber \end{eqnarray}\]
$\Box$

Lemma5

If $B + B^{\mathrm{T}} = A + A^{\mathrm{T}}$, then

\[\begin{eqnarray} A \in \mathcal{S}_{n}^{+} & \Leftrightarrow & B \in \mathcal{S}_{n}^{+} \nonumber \\ A \in \mathcal{S}_{n} & \Leftrightarrow & B \in \mathcal{S}_{n} \nonumber \\ A \in \mathcal{S}_{n}^{\ge 0} & \Leftrightarrow & B \in \mathcal{S}_{n}^{\ge 0} \end{eqnarray}\]

proof.

It safies to show one of neccecity and sufficiency. Suppose that \(A \in \mathcal{S}_{n}\). Since \(A + A^{\mathrm{T}} = (a_{j}^{i} + a_{i}^{j})\),

\[\begin{eqnarray} & & A + A^{\mathrm{T}} = B + B^{\mathrm{T}} \nonumber \\ & \Leftrightarrow & \forall i = 1, \ldots, n, \ a_{i}^{i} = b_{i}^{i} , \quad \nonumber \\ & & \forall j, k = 1, \ldots, n, \ a_{k}^{j} + a_{j}^{k} = b_{k}^{j} + b_{j}^{k} . \nonumber \end{eqnarray}\]

Then applying lemma1 we obtain \(x^{\mathrm{T}}Ax = x^{\mathrm{T}}Bx\).

$\Box$

Lemma6

Then $A$ is nonsingular.

proof.

We will prove that by contradiction. Suppose $A$ is singular. Then we have $\exists x \in \mathbb{R}^{n}$ such that $Ax = 0$ and $x$ is a nonnull vector.. This implies

\[x^{\mathrm{T}}Ax = 0 .\]

Hence $A$ is not positive definite.

$\Box$

Theorem7

Then

proof.

proof of (1). Since $A$ is nonnegative definite, we observe

\[x^{\mathrm{T}}P^{\mathrm{T}}APx = (Px)^{\mathrm{T}}APx \ge 0 .\]

proof of (2). By (1), $A$ is nonnegative definite so that $P^{\mathrm{T}}AP$ is nonnegative definite. For arbitrary matrix $B$, $C$, $\mathrm{rank}(AB) \le \mathrm{rank}(B)$. Hence

\[\mathrm{rank}(P^{\mathrm{T}}AP) \le \mathrm{rank}(P) < m .\]

This implies $P^{\mathrm{T}}AP$ is singular so that $P^{\mathrm{T}}PA$ is not positive definite. Hence $P^{\mathrm{T}}AP$ is positive semidefinite matrix.

proof of (3). $A$ is positive definite so that $(Px)^{\mathrm{T}}APx = 0$ is attained only when $Px = 0$. Since $P$ is nonsigular, $Px = 0$ implies $x = 0$.

$\Box$

Corollary8

proof.

$\Box$

Proposition 9

Then

(1) $xx^{\mathrm{T}}$ is positive definite.

(2) $A + B$ is positive definite.

(3) $\sum_{j=1}^{K}y_{j}y_{j}^{\mathrm{T}}$ is positive definite.

proof.

(1)

\[\begin{eqnarray} \forall y \in \mathbb{R}^{n}, \ y^{\mathrm{T}} xx^{\mathrm{T}} y & = & (x^{\mathrm{T}}y)^{\mathrm{T}} x^{\mathrm{T}} y \nonumber \\ & = & \|x^{\mathrm{T}}y\|^{2} \nonumber \\ & \ge & 0 . \nonumber \end{eqnarray}\]

Moreover, if $y \neq 0$,

\[\begin{eqnarray} & & \|x^{\mathrm{T}}y\|^{2} = 0 \nonumber \\ & \Leftrightarrow & \forall i, \ x_{i} = 0 . \nonumber \end{eqnarray}\]

(2)

\[\begin{eqnarray} \forall y \in \mathbb{R}^{n} \setminus \{0\}, \ y^{\mathrm{T}} (A + B) y & = & y^{\mathrm{T}} A y + y^{\mathrm{T}} B y \nonumber \\ & > & 0 . \nonumber \end{eqnarray}\]

(3)

From (1), for all $j = 1, \ldots, K$, $y_{j}y_{j}^{\mathrm{T}}$ is positive definite. Then by (2) the some of $y_{j}y_{j}^{\mathrm{T}}$ is positive definite.

$\Box$

Proposition 10

Then

(1) there exists $C \in \mathbb{R}^{n \times n}$ such that

\[A = C C .\]

We denote $C$ by $A^{-1}$.

(2) if $A - B$ is positive semidefinite, $A^{1/2} - B^{1/2}$ is semidefinite

proof

(1)

Since $A$ is symmetric, by proposition, $A$ is orthogonalizable.

\[\begin{eqnarray} A & = & V D V^{-1} \nonumber \\ D & = & \mathrm{diag}(\lambda_{1}(A), \ldots, \lambda_{n}(A)) \nonumber \\ V & = & (v_{1}, \ldots, v_{n}) \end{eqnarray}\]

where $v_{i} \in \mathbb{R}^{n}$ is an eigenvector corresponding to the eigenvalue $\lambda_{i}(A)$. We define

\[\begin{eqnarray} D^{1/2} & := & \mathrm{diag}(\lambda_{1}(A)^{1/2}, \ldots, \lambda_{n}(A)^{1/2}) \nonumber \\ C^{1/2} & := & V D^{1/2} V^{-1} . \nonumber \end{eqnarray}\]

Since $A$ is positive semidefinite, the square root of a eigenvalue exists.

\[\begin{eqnarray} C C & = & VD^{1/2}V^{-1} VD^{1/2}V^{-1} \nonumber \\ & = & VDV^{-1} \nonumber \\ & = & A . \nonumber \end{eqnarray}\]

(2)

\[\begin{eqnarray} A^{1/2} - B^{1/2} & = & V_{A}D_{A}^{1/2}V_{A}^{-1} - V_{B}D_{B}^{1/2}V_{B}^{-1} \nonumber \\ & = & \end{eqnarray}\]
$\Box$

Reference