Eigenvalue
Definition1. Eigenvector and Eigenvalues
- \(A \in \mathbb{C}^{n \times n}\),
\(\lambda \in \mathbb{C}\) is an eigenvalue of $A$ if and only if there is a vector $x \in \mathbb{C}^{n}$ such that
\[(A - \lambda I)x = 0 .\]$x$ is said to be an eigenvector with respect to $\lambda$.
Remark2
Eigenvector corresponding to an eigenvalue is not unique. The number of eigenvectors with respect to an eigenvalue is determined by the rank of \(A - \lambda I\). Suppose that $\lambda$ is a eigenvalue of $A$. By dimension theorem, we obtain
\[\dim \mathrm{Ker}(A - \lambda I) = n - \mathrm{rank}(A - \lambda I) .\]Hence the number of eigenvectors equals to \(\dim \mathrm{Ker}(A - \lambda I)\). So we can take linearly independent eigenvectors corresponding to eigenvalue $\lambda$.
Theorem3. Diagolization
- \(A \in \mathbb{C}^{n \times n}\),
- \(x_{1}, \ldots, x_{m} \in \mathbb{C}^{n}\),
- \(X := (x_{1}, \ldots, x_{m})\),
\(x_{1}, \ldots, x_{m}\) are eigenvectors. There exsists a diagonal matrix \(D := \mathrm{diag}(d_{1}, \ldots, d_{m})\) such that
\[AX = XD .\]In this case, \(d_{i}\) is a eigenvector of \(x_{i}\).
proof.
To show only if part,
\[\begin{eqnarray} AX & = & (Ax_{1} \cdots Ax_{m}) \nonumber \\ & = & (\lambda_{1} x_{1} \cdots \lambda_{m} x_{m}) \nonumber \\ & = & (x_{1} \cdots x_{m}) \mathrm{diag}(\lambda_{1}, \ldots, \lambda_{m}) . \nonumber \end{eqnarray}\]To show if part, the equation is equivalent to following equations
\[\begin{eqnarray} \forall i = 1, \ldots, m, \ Ax_{i} = \lambda_{i} x_{i} . \end{eqnarray}\]This is the definition of eigenvectors.
Corollary4.
Eigenvectors \(x_{1}, \ldots, x_{m}\) are linearly independent. Then There exists a diagonal matrix D such that
\[X^{-1}AX = D\]proof.
By the asusmption, $X$ is nonsingular so that $X^{-1}$ exists.
Theorem5. Linear indepence of eigenvectors
- \(A \in \mathbb{C}^{n \times n}\),
- \(k\),
- number of distinct eigenvalues.
- \(\lambda_{i}\ (i= 1, \ldots, k)\),
- distinct eigenvalues
- \(x_{i}^{1}, \ldots, x_{i}^{m_{i}} \ (i = 1, \ldots, k)\),
- linearly independent eieigenvectors corresponding to eigenvalue \(\lambda_{i}\)
Then \(x_{1}^{1}, \ldots, x_{1}^{m_{1}}, \ldots, x_{k}^{1}, \ldots, x_{k}^{m_{k}}\) are linearly independent.
proof.
We prove by mathematical induction with respect to the number of eigenvalues. \(x_{1}^{1}, \ldots, x_{1}^{m_{1}}\) are linearlY independent by definition. Suppose that the set of first \(\sum_{i=1}^{s}m_{i}\) eigenvectors \(x_{1}^{1}, \ldots, x_{1}^{m_{1}}, \ldots, x_{s}^{1}, \ldots, x_{s}^{m_{s}}\) are linear independent for $s \le k - 1$. It suffices to show that the set first \(\sum_{i=1}^{s+1} m_{i}\) eigenvectors is linearly independent.
We prove this by contradiction. Let us assume that the set of eigenvectors is not linearly independent. Then there is a set of scalars \(c_{1}^{1}, \ldots, c_{1}^{m_{1}}, \ldots, c_{s+1}^{1}, \ldots, c_{s+1}^{m_{s+1}}\) such that
\[\begin{equation} \sum_{i=1}^{s + 1} \sum_{j=1}^{m_{i}} c_{i}^{j}x_{i}^{j} = 0. \label{04_01_proof} \end{equation}\]and for some $i^{\prime}$ such that \(c_{i^{\prime}} \neq 0\). We observe that
\[\forall j = 1, \ldots, m_{s+1} \ (A - \lambda_{s+1}I)x_{s+1}^{j} = 0\]and
\[\begin{eqnarray} \forall i = 1, \ldots, s, \ \forall j = 1, \ldots, m_{i}, \ (A - \lambda_{s+1}I)x_{i}^{j} & = & (A - \lambda_{i}I + \lambda_{i}I - \lambda_{s+1}I)x_{i}^{j} \nonumber \\ & = & (\lambda_{i}I - \lambda_{s+1}I)x_{i}^{j} \nonumber \\ & = & (\lambda_{i} - \lambda_{s+1})x_{i}^{j} \end{eqnarray}\]Multiplying both sides of \(A - \lambda_{s+1}\)
\[\begin{eqnarray} (A - \lambda_{s+1}) \sum_{i=1}^{s} \sum_{j=1}^{m_{i+1}} c_{i}^{j}x_{i}^{j} & = & 0 \nonumber \\ \sum_{i=1}^{s+1} (\lambda_{i} - \lambda_{s+1}) \left( \sum_{j=1}^{m_{i+1}} c_{i}^{j}x_{i}^{j} \right) & = & 0 \nonumber \\ \sum_{i=1}^{s} (\lambda_{i} - \lambda_{s+1}) \left( \sum_{j=1}^{m_{i+1}} c_{i}^{j}x_{i}^{j} \right) & = & 0 . \end{eqnarray}\]Since eigenvalues are distinct and by assumption of the mathematical induction \(x_{1}^{1}, \ldots, x_{1}^{m_{1}}, \ldots, x_{s}^{1}, \ldots, x_{s}^{m_{s}}\) are linearly induction, it follows that
\[\forall i = 1, \ldots, s, \ \forall j = 1, \ldots, m_{s}, \ c_{i}^{j} = 0 .\]Substitutiong the above equality into the equation, we find that
\[\sum_{j=1}^{m_{s+1}} c_{s+1}^{j}x_{s+1}^{j} = 0 .\]Since \(x_{s+1}^{1}, \ldots, x_{s+1}^{m_{s+1}}\) are lineraly independent by definition, \(c_{s+1}^{1}, \ldots, c_{s+1}^{m_{s+1}} = 0\). This is contradiction.
Corollary6.
- \(A \in \mathbb{C}^{n \times n}\),
Then $A$ is diagonalizable.
proof.
By combining corollary4 and theorem5.
Thereom7.
- \(A \in \mathbb{C}^{n \times n}\),
Then
- There exists a nonsingular matrix \(Q := (q_{1} \ldots q_{n})\) and \(D := \mathrm{diag}(d_{1}, \ldots, d_{n})\) such that
- \(Q^{-1}AQ = D\),
- $\mathrm{rank}(A)$ equals the number of nonzero diagonal elements of $D$
- \(\mathrm{det}(A) = d_{1} \cdots d_{n}\),
- \(\mathrm{tr}(A) = d_{1} + \cdots + d_{n}\),
- The characteristic polynomial of $A$ is
proof.
From THereom 21.5.1 in Harville, David A. Matrix algebra from a statistician’s perspective. Vol. 1. New York: Springer, 1997.
Theorem8.
- $A \in \mathbb{C}^{n \times n}$
Then \(\exists x_{1}, x_{2}\) such that
\[\begin{eqnarray} & & x_{1} \neq 0 , \ x_{2} \neq 0 \nonumber \\ \forall x \in \mathbb{R}^{n}, \ x \neq 0, \ & & \lambda(x_{1}, A) := \frac{ x_{1}^{\mathrm{T}}Ax_{1} }{ x_{1}^{\mathrm{T}}x_{1} } \le \frac{ x^{\mathrm{T}}Ax }{ x^{\mathrm{T}}x } \le \frac{ x_{2}^{\mathrm{T}}Ax_{2} }{ x_{2}^{\mathrm{T}}x_{2} } =: \lambda(x_{2}, A) \end{eqnarray}\]Moreover, if $A$ is symmetric, \(\lambda(x_{1}, A)\) and \(\lambda(x_{2}, A)\) is smallest and largest eigenvalus of $A$ respectively. \(x_{1}\) and \(x_{2}\) are eigenvectors corresponding to the eigenvalues.
proof.
From Theorem 21.5.6 in Harville, David A. Matrix algebra from a statistician’s perspective. Vol. 1. New York: Springer, 1997.
\[\]Theorem9. Existence of eigenvalue
- $A \in \mathbb{C}^{n \times n}$
- symmetric matrix
Then $A$ has an eigenvalue.
proof.
From Harville, David A. Matrix algebra from a statistician’s perspective. Vol. 1. New York: Springer, 1997.
Theorem10. Orthogonal diagonalization
- $A \in \mathbb{C}^{n \times n}$
- symmetric matrix
$A$ is orthogonally dagonalizable.
proof.
From Harville, David A. Matrix algebra from a statistician’s perspective. Vol. 1. New York: Springer, 1997.
We prove this by mathematical induction. Every $1 \times 1$ matrix is orthogonaly diagonalizable. Suppose that $(n-1) \times (n-1)$ symmetric matrix is orthogonally diagonalizable where $n \ge 2$. Let $A$ be $n \times n$ symmetric matrix. Let $\lambda$, $u$ be eigenvalue of $A$ and eigenvector of norm 1 corresponding to $\lambda$. By gram schmidt orthogonalization, there is a matrix \(V := (v_{i})_{i=2, \ldots, n} \in \mathbb{C}^{n \times (n - 1)}\) which is orthogonal to $u$. Since
\[u^{\mathrm{T}}V = 0 \in \mathbb{C}^{1 \times (n - 1)} ,\]then
\[\begin{eqnarray} (u, V)^{\mathrm{T}}A(u, V) & = & (u, V)^{\mathrm{T}}(Au, AV) \nonumber \\ & = & \left( \begin{array}{cc} u^{\mathrm{T}}Au & u^{\mathrm{T}}AV \\ V^{\mathrm{T}}Au & V^{\mathrm{T}}AV \end{array} \right) \nonumber \\ & = & \left( \begin{array}{cc} u^{\mathrm{T}}\lambda u & (\lambda u)^{\mathrm{T}}V \\ V^{\mathrm{T}}\lambda u & V^{\mathrm{T}}AV \end{array} \right) \nonumber \\ & = & \left( \begin{array}{cc} \lambda & 0 \\ 0 & V^{\mathrm{T}}AV \end{array} \right) \nonumber . \end{eqnarray}\]Since $V^{\mathrm{T}}AV$ is $(n -1) \times (n -1)$ symmetric matrix so that by assumption there exists orthogonal matrix $R \in \mathbb{C}^{(n - 1) \times (n - 1)}$ such that \(R^{\mathrm{T}}(V^{\mathrm{T}}V)R = \mathrm{diag}(d_{2}, \ldots, d_{n})\). Define
\[\begin{eqnarray} S & := & \left( \begin{array}{cc} 1 & 0 \\ 0 & R \end{array} \right) \nonumber \\ P & := & (u, V)S . \nonumber \end{eqnarray}\]Then,
\[\begin{eqnarray} S^{\mathrm{T}}S & = & \left( \begin{array}{cc} 1 & 0 \\ 0 & R^{\mathrm{T}}R \end{array} \right) \nonumber \\ & = & \left( \begin{array}{cc} 1 & 0 \\ 0 & I_{n-1} \end{array} \right) \nonumber \\ & = & I_{n} \end{eqnarray}\]so that $S$ is orthogonal. Moreover $P$ is orthogonal since $(u, V)$ is orthogonal, that is,
\[\begin{eqnarray} P^{\mathrm{T}}P & = & S^{\mathrm{T}}(u, V)^{\mathrm{T}}(u, V)S \nonumber \\ & = & S^{\mathrm{T}}I_{n}S \nonumber \\ & = & I_{n} . \nonumber \end{eqnarray}\]Further,
\[\begin{eqnarray} P^{\mathrm{T}}AP & = & S^{\mathrm{T}}(u, V)^{\mathrm{T}}A(u, V)S \nonumber \\ & = & \left( \begin{array}{cc} 1 & 0 \\ 0 & R \end{array} \right) ^{\mathrm{T}} \left( \begin{array}{cc} \lambda & 0 \\ 0 & V^{\mathrm{T}}AV \end{array} \right) \left( \begin{array}{cc} 1 & 0 \\ 0 & R \end{array} \right) \nonumber \\ & = & \left( \begin{array}{cc} \lambda & 0 \\ 0 & R^{\mathrm{T}}V^{\mathrm{T}}AVR \end{array} \right) \nonumber \\ & = & \left( \begin{array}{cc} \lambda & 0 \\ 0 & \mathrm{diag}(d_{2}, \ldots, d_{n}) \end{array} \right) \nonumber \end{eqnarray}\]so that $P^{\mathrm{T}}AP$ euqals a diagonal matrix. Therefore $A$ is orthogonally diagonalizable.
Corollary11
- $A$
- $n \times n$ symmetric matrix
- \(d_{1}, \ldots, d_{n}\),
- not necessarily distinct eigenvalues of $A$
Then there exists $n \times n$ orthogonal matrix $Q$ such that
\[Q^{\mathrm{T}}AQ = \mathrm{diag}(d_{1}, \ldots, d_{n})\]proof.
From Harville, David A. Matrix algebra from a statistician’s perspective. Vol. 1. New York: Springer, 1997.
Accoding to theorem10,
Proposition 12
- $A \in \mathbb{R}^{n \times n}$,
- $B \in \mathbb{R}^{n \times n}$,
- positive definite so that its inverse exists
- $\lambda_{i}(A)$,
- $i$-th largest eivenvalue of $A$,
- \(\lambda(A) := \{\lambda_{i}(A)\}_{i}\),
(1)
\[\lambda_{i}(E - A) = 1 - \lambda_{i}(A) .\](2)
\[\lambda_{i}(B^{-1}) = \frac{ 1 }{ \lambda_{n - i}(B) } .\](3) $c > 0$,
\[\lambda_{i}(cA) = c \lambda_{i}(B) .\](4) $k \in \mathbb{N}$,
\[\lambda_{i}(B^{k/2}) = \lambda_{i}(B)^{k/2} .\](5)
proof
(1)
If all eigenvalues are distinct,
\[\begin{eqnarray} (E - A)x & = & x - Ax \nonumber \\ & = & x - \lambda_{i}(A)x \nonumber \\ & = & (1 - \lambda_{i}(A))x . \nonumber \end{eqnarray}\](2)
\[\begin{eqnarray} (E - A)x & = & x - Ax \nonumber \\ & = & x - \lambda_{i}(A)x \nonumber \\ & = & (1 - \lambda_{i}(A))x . \nonumber \end{eqnarray}\](3)
(4)
Let $VDV^{-1}$ be diagonalization of $B$.
\[\begin{eqnarray} D & = & \mathrm{diag}(\lambda_{1}(B), \ldots, \lambda_{n}(B)) \nonumber \\ D^{k/2} & = & \mathrm{diag}(\lambda_{1}(B)^{k/2}, \ldots, \lambda_{n}(B)^{k/2}) \nonumber . \end{eqnarray}\]Then
\[\begin{eqnarray} B^{k/2} & = & VD^{k/2}V^{-1} . \nonumber \end{eqnarray}\]Since eigenvalues of \(VD^{k/2}V^{-1}\) is equals to $D^{k/2}$,
\[\begin{eqnarray} \lambda_{i}(VD^{k/2}V^{-1}) & = & \lambda_{i}(B)^{k/2} . \nonumber \end{eqnarray}\]Remark
In general, there is no relation between eigenvalues of product of matrix $\lambda(AB)$ and eigenvalues of $\lambda(A)$ and $\lambda(B)$.
Reference
- Harville, David A. Matrix algebra from a statistician’s perspective. Vol. 1. New York: Springer, 1997.