Polar Decomposition
- $A \in \mathbb{C}^{n \times n}$
Polar decomposition of $A$ is a decompositionof the form
\[A = UP\]where $U \in \mathbb{C}^{n \times n }$ unitary matrix and $P$ is a positive-semidifinite hermitian matrix.
Thereom
- $A \in \mathbb{C}^{n \times n}$,
- $W \in \mathbb{C}^{n \times n}$,
- unitary matrix
- $V \in \mathbb{C}^{n \times n}$,
- unitary matrix
- $\Sigma \in \mathbb{C}^{n \times n}$,
- nonnegative realnumber diagonal matrix
- $U \in \mathbb{C}^{n \times n}$,
- unitary matrix
- $P \in \mathbb{C}^{n \times n}$,
- positive semidifinite hermitian matrix
Then following statements are equivalent:
- (a) Singular value decomposition of \(A = W\Sigma V^{*}\) exists,
- (b) Polar decomposition of $A = UP$ exists.
proof.
(a) $\Rightarrow$ (b) Suppose \(A = W \Sigma V^{*}\). Let
\[\begin{eqnarray} P & := & V \Sigma V^{*} \nonumber \\ U & := & WV^{*} . \nonumber \end{eqnarray}\]$U$ is unitary matrix since
\[\begin{eqnarray} U^{*}U & = & VW^{*}WV^{*} \nonumber \\ & = & I . \nonumber \end{eqnarray}\]Diagonal matrix $\Sigma$ is positve semidefinite since
\[\begin{eqnarray} x^{\mathrm{T}}\Sigma x = \sum_{i=1}^{r} d_{i}(x_{i})^{2} \ge 0 \end{eqnarray}\]$P$ is positve definite since
\[\begin{eqnarray} x^{*}V\Sigma V^{*}x & = & (V^{*}x)^{*}\Sigma (V^{*}x) \nonumber \end{eqnarray}\](a) $\Leftarrow$ (b)
$P$ is symmetric positive semidefinite so that by eigenvalue decomposition weh have
\[P = VDV^{*}\]where \(V\) unitary matrix and \(D = \mathrm{diag}(d_{1}, \ldots, d_{r}, 0, \ldots, 0)\) and \(d_{i} > 0\). Then we define
\[\begin{eqnarray} A & = & UP \nonumber \\ & = & UVDV^{*} \nonumber \\ & = & WDV \nonumber \end{eqnarray}\]where $W := UV$. $W$ is unitary matrix since $U$ and $V$ are both unitary.
Thereom2
- $A \in \mathbb{C}^{n \times n}$,
- nonsingular
Then polar decomposition is unique and $P$ is positive definite.
proof.
Suppose that there exists another decomposition \(A = U_{1}P_{1}\) where \(U_{1}\) is unitary and \(P_{1}\) is hermitian positive semidefinite matrix.
\[A^{\mathrm{T}}A = P_{1}^{\mathrm{T}}P\]TBD
Reference
- Polar decomposition - Wikipedia
- http://www.cis.upenn.edu/~cis610/geombchap12.pdf