Singular Value Decomposition
- $m \ge n$
- \(A \in \mathbb{C}^{m \times n}\),
SVD of $A$ is
\[\begin{equation} A = U \Sigma V^{*} \end{equation}\]where
- $U$
- $m \times m$ unitary matrix
- $V$
- $n \times n$ unitary matrix
- \(\Sigma = \mathrm{diag}(\sigma_{1}, \ldots, \sigma_{n})\),
- $m \times n$ matrix
- \(\sigma_{1} \ge \ldots \ge \sigma_{n} \ge 0\),
Definition. Hermitian matrix
- \(A = (a_{j}^{i})_{i = 1, \ldots, m, j = 1, \ldots, n} \in \mathbb{C}^{m \times n}\),
- matrix
$A$ is a hermitian matrix iff \(A^{*} = A\) where
\[A^{*} := \bar{A}^{\mathrm{T}}.\]Definition. Singluar Value
- $m \ge n$
- \(A \in \mathbb{C}^{m \times n}\),
- Hermitian matrix
Singlua values \(\{\sigma_{1}, \ldots, \sigma_{k}\}\) of $A$ are square root of non negative eigenvalues of \(AA^{*}\). i.e. Let \(\lambda_{1}, \ldots, \lambda_{n}\) be eigenvalues of \(AA^{*}\).
\[\{\sigma_{i}\}_{i} = \{\sqrt{\lambda_{i}} \mid \lambda_{i} \ge 0\}_{i}\]Theorem 1
- \(A \in \mathbb{C}^{m \times n}\),
- rank $r$
- \(\sigma_{i}\),
- singular value of $A$,
- \(Q_{1} \in \mathbb{C}^{n \times r}\),
- \(Q_{2} \in \mathbb{C}^{n \times (n - r)}\),
- \(Q := (Q_{1}, Q_{2}) \in \mathbb{C}^{n \times n}\),
- orthogonal matrix
- \(P_{1} := AQ_{1}D_{1}^{-1} \in \mathbb{C}^{m \times r}\),
- \(P_{2} \in \mathbb{C}^{m \times (m - r)}\),
- \(P := (P_{1}, P_{2}) \in \mathbb{C}^{m \times m}\),
- \(D_{1} \in \mathbb{C}^{r \times r}\),
Suppose $A$ satisfies
\[\begin{equation} Q^{\mathrm{T}}A^{\mathrm{T}}AQ = \left( \begin{array}{cc} D_{1}^{2} & 0 \\ 0 & 0 \end{array} \right). \label{singular_value_decomposition_condition_01} \end{equation}\]If there is \(P_{2}\) such that
\[\begin{equation} P_{1}^{\mathrm{T}}P_{2} = 0 . \label{singular_value_decomposition_condition_02} \end{equation}\]Then
\[P^{\mathrm{T}}AQ = \left( \begin{array}{cc} D_{1} & 0 \\ 0 & 0 \end{array} \right).\]proof.
Since
\[\begin{eqnarray} Q^{\mathrm{T}}A^{\mathrm{T}}Q & = & \left( \begin{array}{c} Q_{1}^{\mathrm{T}} \\ Q_{2}^{\mathrm{T}} \end{array} \right) A^{\mathrm{T}} \left( \begin{array}{cc} Q_{1} & Q_{2} \end{array} \right) \nonumber \\ & = & \left( \begin{array}{cc} Q_{1}^{\mathrm{T}}A^{\mathrm{T}}AQ_{1} & Q_{1}^{\mathrm{T}}A^{\mathrm{T}}AQ_{2} \\ Q_{2}^{\mathrm{T}}A^{\mathrm{T}}AQ_{1} \end{array} \right) \nonumber \\ & = & \left( \begin{array}{cc} Q_{1}^{\mathrm{T}}A^{\mathrm{T}}AQ_{1} & Q_{1}^{\mathrm{T}}A^{\mathrm{T}}AQ_{2} \\ Q_{2}^{\mathrm{T}}A^{\mathrm{T}}AQ_{1} \end{array} \right), \end{eqnarray}\]we have that
\[\begin{eqnarray} Q_{1}^{\mathrm{T}}A^{\mathrm{T}}AQ_{1} & = & D_{1}^{2} \nonumber \\ (AQ_{2})^{\mathrm{T}}AQ_{2} & = & 0 \nonumber \end{eqnarray}\]by comparing with \(\eqref{singular_value_decomposition_condition}\). In light of Corollary 5.3.2, we have obtained \(AQ_{2} = 0\).
\[\begin{eqnarray} P^{\mathrm{T}}AQ & = & \left( \begin{array}{c} P_{1}^{\mathrm{T}} \\ P_{2}^{\mathrm{T}} \end{array} \right) A (Q_{1}, Q_{2}) \nonumber \\ & = & \left( \begin{array}{cc} P_{1}^{\mathrm{T}}AQ_{1} & P_{1}^{\mathrm{T}}AQ_{2} \\ P_{2}^{\mathrm{T}}AQ_{1} & P_{2}^{\mathrm{T}}AQ_{2} \end{array} \right) \nonumber \\ & = & \left( \begin{array}{cc} D_{1}^{-1}Q_{1}^{\mathrm{T}}A^{\mathrm{T}}AQ_{1} & 0 \\ P_{2}^{\mathrm{T}}P_{1}D_{1} & 0 \end{array} \right) \nonumber \\ & = & \left( \begin{array}{cc} D_{1}^{-1}D_{1}^{2} & 0 \\ (P_{1}P_{2})^{\mathrm{T}}D_{1} & 0 \end{array} \right) \nonumber \\ & = & \left( \begin{array}{cc} D_{1} & 0 \\ 0 & 0 \end{array} \right) \end{eqnarray}\]Theorem2. Existence of singular values
- \(A \in \mathbb{C}^{m \times n}\),
- rank $r$
Then there are \(Q_{1}\), \(D_{1}\) and \(P_{2}\) such that
- \(Q_{1} \in \mathbb{C}^{n \times r}\),
- \(Q_{2} \in \mathbb{C}^{n \times (n - r)}\),
- \(Q := (Q_{1}, Q_{2}) \in \mathbb{C}^{n \times n}\),
- orthogonal matrix
- \(P_{1} := AQ_{1}D_{1}^{-1} \in \mathbb{C}^{m \times r}\),
- \(P_{2} \in \mathbb{C}^{m \times (m - r)}\),
and satisfy \(\eqref{singular_value_decomposition_condition_01}\) and \(\eqref{singular_value_decomposition_condition_02}\).
proof.
Existence of $Q$ is direct consequence from eigenvalue decomposition. Since $A^{\mathrm{T}}A$ is $n \times n$ symmetric matrix, we can diagonalize $A^{\mathrm{T}}A$ by threorem. Thus there are diagonal matrix $D^{\prime}$ and orthogonal matrix $Q$ such that $Q^{\mathrm{T}}A^{\mathrm{T}}AQ = D^{\prime}$. \(A^{\mathrm{T}}A\) is nonnegative definite since
\[\begin{eqnarray} x^{\mathrm{T}}A^{\mathrm{T}}Ax & = & (Ax)^{\mathrm{T}}Ax \nonumber \\ & = & \sum_{i=1}^{n} b_{i}^{2} \ge 0 \nonumber \end{eqnarray}\]where \(b^{i} := \sum_{j=1}^{n}a_{j}^{i}x^{j}\). Then all eigenvalues are nonnegative, that is, \(D^{\prime} = \mathrm{diag}(d_{1}, \ldots, d_{r}, 0, \ldots, 0)\) where \(d_{1}, \ldots, d_{r} \ge 0\). Let \(s_{i} := \sqrt{d_{i}}\) and \(D_{1} := \mathrm{diag}(s_{1}, \ldots, s_{r})\). We have
\[Q^{\mathrm{T}}A^{\mathrm{T}}AQ = \left( \begin{array}{cc} D_{1}^{2} & 0 \\ 0 & 0 \end{array} \right) .\]The existence of \(P_{2}\) is easy to obtain by defining \(P_{1} := AQ_{1}D_{1}^{-1}\) and \(P_{2} := AQ_{1}D_{1}^{-1}\). We obtain
\[P_{1}^{\mathrm{T}}P_{2} = D_{1}^{-1}Q_{1}^{\mathrm{T}}A^{\mathrm{T}} AQ_{1}D_{1}^{-1} = D_{1}^{-1} (D_{1})^{2} D_{1}^{-1} = I_{n} .\]Hence by the theorem. singular value decomposition of $A$ exists.
Algorithms
There are a lot of algorithms to compute SVD.
Algorithm Golub-Kahan SVD Diagonalization
By applying Householder Bidiagonalization algorithm to $A \in \mathbb{R}^{m \times n}$, we obtain bidiagonal matrix $B \in \mathbb{R}^{m \times n}$. Then we apply symmetric QR algorithm to tridiagonal matrix $T := B^{\mathrm{T}}B$.
Algorithm Golub-Kahan SVD
- $U$,
- orthogonal
- $V$,
- orthogonal
- $D \in \mathbb{R}^{m \times n}$,
- diagonal
- $E$,
- \(\norm{E}_{2} \approx u \norm{A}_{2}\) for some $u > 0$
Reference
- lecture3.pdf
- Harville, David A. Matrix algebra from a statistician’s perspective. Vol. 1. New York: Springer, 1997.