Introduction to Online Optimization
1. Introduction
- $\mathcal{Z}$,
- domain of observations
- $Z_{1}, \ldots, Z_{n} \in \mathcal{Z}$,
- i.i.d
- $\mathcal{A}$,
- set of possible actions
- $a(Z_{1}, \ldots, Z_{n}) \in \mathcal{A}$,
- decision function
- $l:\mathcal{A} \times \mathcal{Z} \rightarrow \mathbb{R}_{\ge 0}$,
- loss function
- $\mathrm{E}[l(a(Z_{1}, \ldots, Z_{n}), Z)]$,
- average loss
Objectives is the minimize the exccess risk:
\[r_{n} := \mathrm{E} \left[ l(a(Z_{1}, \ldots, Z_{n}), Z) - \inf_{a \in \mathcal{A}} l(a, Z) \right] .\]1.2. Online Learning
Online optimization protocol
- Step1. For $t = 1, \ldots, n$,
- Step2. Choose action $a_{t} \in \mathcal{A}$,
- Step3. Simultaneously an adversary selects $z_{t} \in \mathcal{Z}$,
- Step4. Suffer loss $l(a_{t}, z_{t})$,
- Step5. Observe $z_{t}$
Objectives
\[\begin{eqnarray} R_{n} & := & \sum_{t=1}^{n} l(a_{t}, z_{t}) - \inf_{a \in \mathcal{A}} \sum_{t=1}^{n} l(a, z_{t}) \nonumber \end{eqnarray}\]Example 1: Online regression, online classification
Parameters
- $\mathcal{X}$,
- input
- $\mathcal{Y}$,
- categories
- $\mathcal{A}$,
- a set of regression functions; $a_{t}: \mathcal{X} \rightarrow \mathcal{Y}$,
Step
- Step1. For $t = 1, \ldots, n$,
- Step2. choose regression function $a_{t}$,
- Step3. Advertisery choice $z_{t}$
- Step4. Suffer loss $l(z_{t}, (x_{t}, y_{t}))$,
- Step5. Observe $(x_{t}, y_{t}) \in \mathcal{X} \times \mathcal{Y}$,
Example of loss function
\[l(a, (x, y)) := -a(x) 1_{a(x) \le y}\]Example 2: Sequential investment
- $d \in \mathbb{N}$,
- the number of assets in a stock market
- $z \in \mathbb{R}_{\ge 0}^{d}$,
- market vector
- price of assets
- $a \in \mathbb{R}_{\ge 0}^{d}$,
- investments for the assets
- $W_{t}$,
- current total capital
Return of this invesments
\[\sum_{i=1}^{d} a_{i} z_{i} = a^{\mathrm{T}} z .\]A set of investments is probability simplex
\[\mathcal{A} := \{ a \in \mathbb{R}_{\ge 0}^{d} \mid \sum_{i=}^{d} a_{i} = 1 \}\]Wealth at the end of period $t$ satisfies
\[\begin{eqnarray} W_{t} & := & \sum_{i=1}^{d} a_{t, i} W_{t-1} z_{t, i} \nonumber \\ & = & W_{t-1} a_{t}^{\mathrm{T}} z_{t} \nonumber \\ & = & W_{0} \prod_{s=1}^{t} a_{s}^{\mathrm{T}} z_{s} \nonumber \end{eqnarray}\]We want to maximize the competitive wealth ration
\[\begin{eqnarray} & & \sup_{a \in \mathcal{A}} \frac{ W_{n}^{a} }{ W_{n} } \nonumber \\ W_{n}^{a} & := & W_{0} \prod_{s=1}^{n} a^{\mathrm{T}} z_{s} \nonumber \end{eqnarray}\]Logarithmic of the factions satisfies
\[\begin{eqnarray} \log \left( \frac{ W_{n}^{a} }{ W_{n} } \right) & = & \log W_{0} + \sum_{s=1}^{n} \log a^{\mathrm{T}} z_{s} - \left( \log W_{0} + \sum_{s=1}^{n} \log a_{t}^{\mathrm{T}} z_{s} \right) \nonumber \\ & = & \sum_{s=1}^{n} \log a^{\mathrm{T}} z_{s} - \sum_{s=1}^{n} \log a_{t}^{\mathrm{T}} z_{s} \end{eqnarray}\]Taking logarithm of the competitive wealth ration
\[\begin{eqnarray} \log \left( \sup_{a \in \mathcal{A}} \frac{ W_{n}^{a} }{ W_{n} } \right) & = & \sup_{a \in \mathcal{A}} \log \left( \frac{ W_{n}^{a} }{ W_{n} } \right) \nonumber \\ & = & \sup_{a \in \mathcal{A}} \left( \sum_{s=1}^{n} \log a^{\mathrm{T}} z_{s} - \sum_{s=1}^{n} \log a_{t}^{\mathrm{T}} z_{s} \right) \nonumber \\ & = & - \inf_{a \in \mathcal{A}} - \sum_{s=1}^{n} \log a^{\mathrm{T}} z_{s} - \sum_{s=1}^{n} \log a_{t}^{\mathrm{T}} z_{s} \nonumber \\ & = & - \inf_{a \in \mathcal{A}} \sum_{s=1}^{n} l(a, z_{s}) + \sum_{s=1}^{n} l(a_{t}, z_{s}) \end{eqnarray}\]where $l(a, z) := - \log(a^{\mathrm{T}}z)$ is a loss function. We obtain corresponding online learning problem to maximize the competitive wealth ration.
Example 3: Prediction with expert advice
- $d \in \mathbb{N}$,
- $\mathcal{A}$,
- convex
- $(b_{t, i})_{i = 1, \ldots, d} \in \mathcal{A}^{d}$
- advice at $t$,
- $a_{t} \in \mathcal{A}$,
- choice at $t$,
Our goal is to obain bounds independent of the expert advice with some loss function $\ell$
\[R_{n}^{E} := \sum_{t=1}^{n} l(a_{t}, z_{t}) - \min_{i = 1, \ldots, d} \sum_{t=1}^{n} l(b_{t, i}, z_{t}) .\]There is another formulation when we allow to choose action $a_{t}$ by a convex combination of the advices.
- \(e_{1}, \ldots, e_{n}\),
- canonical basis of $\mathbb{R}^{d}$
Then $(d - 1)$-simplex on the basis is
\[\Delta_{d} := \{ p \in \mathbb{R}_{\ge 0}^{d} \mid \sum_{i=1}^{d} p_{i} = 1 \}\]- $\bar{\mathcal{Z}} := \mathcal{A}^{d} \times \mathcal{Z}$,
We define a new loss function $\bar{\ell}:\Delta_{d}\times\bar{\mathcal{Z}} \rightarrow \mathbb{R}_{\ge 0}$,
\[\bar{\ell}(p, (b, z)) := \ell \left( \sum_{i=1}^{d} p_{i}b_{i}, z \right) .\]Regret of this problem is given by
\[\begin{eqnarray} R_{n}^{E} := \sum_{t=1}^{n} \bar{\ell}(p_{t}, (bt_{t}, z_{t})) - \inf_{i = 1, \ldots, d} \sum_{t=1}^{n} \bar{\ell}(e_{i}, (b_{t}, z_{t})) \nonumber \end{eqnarray}\]Example 4: Online linear/mixed-integer optimization
A simple linear optimization problem without constraints are formulated with
- $\mathcal{A}, \mathcal{Z} \subseteq \mathbb{R}^{d}$,
- $l(a, z) := a^{\mathrm{T}}z$,
We formulate the problem of path planning, which hash many intresting and challenging applications.
- $G = (V, E)$,
- \(V := \{1, \ldots, N \}\),
- \(E := \{1, \ldots, d \}\),
- \(\mathcal{A} \subseteq \{0, 1\}^{d}\),
- a element represents a path on the graph
- $a_{i} = 1$ if a edge $i$ is used, otherwise 0.
- $z \in \mathcal{Z}$,
- a weight on the edges
- $a^{\mathrm{T}}z$,
- the total weight given a path $a$ and wieght $z$,
- the cost of the path
Our objective is the minimize the cost of the path.
\[R_{n} := \sum_{t=1}^{n} a_{t}^{\mathrm{T}} z_{t} - \inf_{a \in \mathcal{A}} \sum_{t=1}^{n} a^{\mathrm{T}} z_{t} .\]Example 5: Online matrix completion
- $k, d \in \mathbb{N}$,
- $M \in \mathbb{R}^{m \times d}$,
- matrix
- $a_{t} \in \mathbb{R}^{m \times d}$,
- our prediciton of matrix $M$,
- rank bounded by $k$,
- \(\mathcal{Z} := \{(i, j) \mid i = 1, \ldots, m, \ j = 1, \ldots, d\}\),
- $z_{t} := (i, j)$,
- the position of matrix revealed at $t$,
The loss is
\[\ell(a, (i, j)) := (a_{i, j} - M_{i, j})^{2} .\]Example 6: One-pass offline optimization
- $\mathcal{A}$,
- convex set
- $\mathcal{Z}$,
- $\ell: \mathcal{A} \times \mathcal{Z} \rightarrow \mathbb{R}_{\ge 0}^{d}$,
- a convex loss function with respect to $\mathcal{Z}$,