View on GitHub

memo

Introduction to Online Optimization Chapter01

Introduction to Online Optimization

1. Introduction

Objectives is the minimize the exccess risk:

\[r_{n} := \mathrm{E} \left[ l(a(Z_{1}, \ldots, Z_{n}), Z) - \inf_{a \in \mathcal{A}} l(a, Z) \right] .\]

1.2. Online Learning

Online optimization protocol

Objectives

\[\begin{eqnarray} R_{n} & := & \sum_{t=1}^{n} l(a_{t}, z_{t}) - \inf_{a \in \mathcal{A}} \sum_{t=1}^{n} l(a, z_{t}) \nonumber \end{eqnarray}\]

Example 1: Online regression, online classification

Parameters

Step

Example of loss function

\[l(a, (x, y)) := -a(x) 1_{a(x) \le y}\]

Example 2: Sequential investment

Return of this invesments

\[\sum_{i=1}^{d} a_{i} z_{i} = a^{\mathrm{T}} z .\]

A set of investments is probability simplex

\[\mathcal{A} := \{ a \in \mathbb{R}_{\ge 0}^{d} \mid \sum_{i=}^{d} a_{i} = 1 \}\]

Wealth at the end of period $t$ satisfies

\[\begin{eqnarray} W_{t} & := & \sum_{i=1}^{d} a_{t, i} W_{t-1} z_{t, i} \nonumber \\ & = & W_{t-1} a_{t}^{\mathrm{T}} z_{t} \nonumber \\ & = & W_{0} \prod_{s=1}^{t} a_{s}^{\mathrm{T}} z_{s} \nonumber \end{eqnarray}\]

We want to maximize the competitive wealth ration

\[\begin{eqnarray} & & \sup_{a \in \mathcal{A}} \frac{ W_{n}^{a} }{ W_{n} } \nonumber \\ W_{n}^{a} & := & W_{0} \prod_{s=1}^{n} a^{\mathrm{T}} z_{s} \nonumber \end{eqnarray}\]

Logarithmic of the factions satisfies

\[\begin{eqnarray} \log \left( \frac{ W_{n}^{a} }{ W_{n} } \right) & = & \log W_{0} + \sum_{s=1}^{n} \log a^{\mathrm{T}} z_{s} - \left( \log W_{0} + \sum_{s=1}^{n} \log a_{t}^{\mathrm{T}} z_{s} \right) \nonumber \\ & = & \sum_{s=1}^{n} \log a^{\mathrm{T}} z_{s} - \sum_{s=1}^{n} \log a_{t}^{\mathrm{T}} z_{s} \end{eqnarray}\]

Taking logarithm of the competitive wealth ration

\[\begin{eqnarray} \log \left( \sup_{a \in \mathcal{A}} \frac{ W_{n}^{a} }{ W_{n} } \right) & = & \sup_{a \in \mathcal{A}} \log \left( \frac{ W_{n}^{a} }{ W_{n} } \right) \nonumber \\ & = & \sup_{a \in \mathcal{A}} \left( \sum_{s=1}^{n} \log a^{\mathrm{T}} z_{s} - \sum_{s=1}^{n} \log a_{t}^{\mathrm{T}} z_{s} \right) \nonumber \\ & = & - \inf_{a \in \mathcal{A}} - \sum_{s=1}^{n} \log a^{\mathrm{T}} z_{s} - \sum_{s=1}^{n} \log a_{t}^{\mathrm{T}} z_{s} \nonumber \\ & = & - \inf_{a \in \mathcal{A}} \sum_{s=1}^{n} l(a, z_{s}) + \sum_{s=1}^{n} l(a_{t}, z_{s}) \end{eqnarray}\]

where $l(a, z) := - \log(a^{\mathrm{T}}z)$ is a loss function. We obtain corresponding online learning problem to maximize the competitive wealth ration.

Example 3: Prediction with expert advice

Our goal is to obain bounds independent of the expert advice with some loss function $\ell$

\[R_{n}^{E} := \sum_{t=1}^{n} l(a_{t}, z_{t}) - \min_{i = 1, \ldots, d} \sum_{t=1}^{n} l(b_{t, i}, z_{t}) .\]

There is another formulation when we allow to choose action $a_{t}$ by a convex combination of the advices.

Then $(d - 1)$-simplex on the basis is

\[\Delta_{d} := \{ p \in \mathbb{R}_{\ge 0}^{d} \mid \sum_{i=1}^{d} p_{i} = 1 \}\]

We define a new loss function $\bar{\ell}:\Delta_{d}\times\bar{\mathcal{Z}} \rightarrow \mathbb{R}_{\ge 0}$,

\[\bar{\ell}(p, (b, z)) := \ell \left( \sum_{i=1}^{d} p_{i}b_{i}, z \right) .\]

Regret of this problem is given by

\[\begin{eqnarray} R_{n}^{E} := \sum_{t=1}^{n} \bar{\ell}(p_{t}, (bt_{t}, z_{t})) - \inf_{i = 1, \ldots, d} \sum_{t=1}^{n} \bar{\ell}(e_{i}, (b_{t}, z_{t})) \nonumber \end{eqnarray}\]

Example 4: Online linear/mixed-integer optimization

A simple linear optimization problem without constraints are formulated with

\[R_{n} := \sum_{t=1}^{n} a_{t}^{\mathrm{T}} z_{t} - \inf_{a \in \mathcal{A}} \sum_{t=1}^{n} a^{\mathrm{T}} z_{t}\]

We formulate the problem of path planning, which hash many intresting and challenging applications.

Our objective is the minimize the cost of the path.

\[R_{n} := \sum_{t=1}^{n} a_{t}^{\mathrm{T}} z_{t} - \inf_{a \in \mathcal{A}} \sum_{t=1}^{n} a^{\mathrm{T}} z_{t} .\]

Example 5: Online matrix completion

The loss is

\[\ell(a, (i, j)) := (a_{i, j} - M_{i, j})^{2} .\]

Example 6: One-pass offline optimization

\[a(Z_{1}, \ldots, Z_{n}) := \frac{ 1 }{ n } \sum_{t=1}^{n} a_{t} .\] \[r_{n} \le \frac{ R_{n} }{ n } .\]

Reference