Introduction to Online Convex Optimization Notation
Definition Categorical r.v.
- $\Delta_{n}$,
- $n - 1$-simplex
- $x \in \Delta_{n}$,
- \(I \in \{1, \ldots, n\}\),
- r.v.
$I$ is said to categorical r.v. with probability $x$ if its p.d.f. is
\[i = 1, \ldots, n, \ \mathrm{Categ}(i; x) := \sum_{j=1}^{n} x_{j} 1_{\{j = i\}} .\]■
Definition independent categorical r.v.s over simplex
- $\Delta_{n}$,
- $n - 1$-simplex
Let $\mathcal{I}$ be a set of independent categorical r.v. with distribution $x \in \Delta_{n}$. That is,
\[I_{1}, \ldots, I_{k} \in \mathcal{I}, \ P(I_{1}, \ldots, I_{k}) = \prod_{i=1}^{k} P(I_{i}) .\]\(\mathcal{I}_{\Delta_{n}}\) is called independent categorical r.v.s over $\Delta_{n}$.
■