Duality in Nonconvex Optimization
1.2 Preliminaries
- $\bar{\mathbb{R}}$,
- extended real number
- $V, V^{*}$,
- real vector space
- $\langle , \rangle: V \times V^{*} \rightarrow \mathbb{R}$,
- bilinear form
Definition Separating
$V$ and $V^{*}$ is said to be vector spaces put in duality if there exists bilinear form $\langle , \rangle$.
Duality $\langle , \rangle$ is said to be separating if
\[u \neq 0 \in V, \ \exists u^{*} \in V^{*}, \text{ s.t. } \langle u, u^{*} \rangle \neq 0,\]and
\[u^{*} \neq 0 \in V^{*}, \ \exists u \in V, \text{ s.t. } \langle u, u^{*} \rangle \neq 0.\]Definition Weak topology
- $(\mathbb{R}, \mathcal{O})$,
- standard topogical sp.
- $f_{u^{*}}: V \rightarrow \mathbb{R}$,
- \(f_{u^{*}}(u) := \langle u, u^{*} \rangle\),
We denote the weak topology on $V$ by $\sigma(V, V^{*})$.
\[\sigma(V, V^{*}) := \mathfrak{M} \{ f_{u^{*}}^{-1}(O) \mid u^{*} \in V^{*}, \ O \in \mathcal{O} \} .\]Analogousy we define
\[\sigma(V, V^{*}) := \mathfrak{M} \{ f_{u}^{-1}(O) \mid u \in V, \ O \in \mathcal{O} \},\]where \(f_{u}(u^{*}) := \langle u, u^{*} \rangle\) and $\mathfrak{M}(\mathcal{A})$ is the smallest topology containing $\mathcal{A} \subseteq 2^{\mathbb{R}}$.
Proposition Equivalent condition for Hausdorff
The following statements are equivalent:
- (a) $\sigma(V, V^{*})$ is Hausdorff,
- (b) $\sigma(V^{*}, V)$ is Hausdorff,
- (c) the duality between $V$ and $V^{*}$ is separating.
proof
(a) $\Rightarrow$ (b)
(b) $\Rightarrow$ (c)
We shall consider the spaces $V$ and $V^{*}$ in separating duality endowed with the topologies \(\sigma(V, V^{*})\) and \(\sigma(V^{*}, V)\). All statements concerning continuity, lower semicontinuity, convergence, closure, etc. will refer to continuity, lower semicontinuity, convergence, closure etc. in these topology.
Definition lower semicontinuity
- $F: V \rightarrow \bar{\mathbb{R}}$,
- functional
$F$ is said to be lower semicontinuity (l.s.c.) if
\[\forall u \in V, \ u_{n} \rightarrow u, \ F(u) \le \lim \inf F(u_{n}) .\]Definition convex
- $F: V \rightarrow \bar{\mathbb{R}}$,
- functional
$F$ is said to be convex if
\[\forall w, u \in V, \ F(\lambda u + (1 - \lambda) w) \le \lambda F(u) + (1 - \lambda)) F(w) \quad \lambda \in (0, 1) .\]$F$ is said to be strictly convex if the above inequality is strict inequality for all $u \neq w$.
Proposition
- $F:V \rightarrow \bar{\mathbb{R}}$,
- convex, l.s.c.
Then
\[\forall u \in V, \ F(u) = -\infty .\]proof
Definition affine continuous
- $f: V \rightarrow \bar{\mathbb{R}}$,
- function
$f$ is said to be affine continuous on $V$ if there exists continuous linear functional $l:V \rightarrow \mathbb{R}$ and $\alpha \in \mathbb{R}$ such that
\[f(u) = l(u) + \alpha .\]Proposition
- $V$, $V^{*}$
- in separating duality
If $f$ is affine continuous functions on $V$, then
\[\exists u^{*} \in V^{*}, \text{ s.t. } f(u) = \langle u, u^{*} \rangle + \alpha .\]proof
We shall denote by $\Gamma(V)$
\[\Gamma(V) := \left\{ f(u) := \sup_{ i \in \Lambda } f_{i}(u) \mid \{ f_{i} \}_{i \in \Lambda} \text{ a set of affine continuous funcitons on } V \right\}\]Reference
- Toland, J. F. (1978). Duality in nonconvex optimization. Journal of Mathematical Analysis and Applications. https://doi.org/10.1016/0022-247X(78)90243-3