View on GitHub

memo

Corlo Image Processing an Applications

Corlo Image Processing an Applications

1.1 Basics of Color Vision

The human retina has three types of color phot-ceptor cells, called cones.

Typ of color models

  1. Colorimetric color models
  2. Psychophysical color models
  3. Physiologically inspired color moels
  4. Opponent color models

Type of color models in image processing applications

  1. Device-oriented color models
  2. User-oriented color models
  3. Device-indepedent color models

Color spaces

1.2. The CIE Chromaticity-based Models

Assumption that three primary colors \(C_{k}\) with Spectral Dstribution \(C_{k}(\lambda)\) are available and let

\[\int_{\Lambda} C_{k}(\lambda) \ d\lambda = 1\]

Young’s model assums that spectral energy distribution $C(\lambda)$ for color $C$ is linear combination of spectral distributions $C_{i}(\lambda)$ for primary colors $C_{i}$.

\[\begin{equation} \alpha_{i}(C) := \int_{\Lambda} S_{i}(\lambda) C_{i}(\lambda) \ d\lambda \label{chap01_01_01} \end{equation}\] \[\begin{eqnarray} \alpha_{i}(C) & := & \int_{\Lambda} \left( \sum_{k=1}^{3} \beta_{k} C_{k}(\lambda) \right) S_{i}(\lambda) \ d \lambda \nonumber \\ & = & \sum_{k=1}^{3} \beta_{k} \int_{\Lambda} C_{k}(\lambda) S_{i}(\lambda) \ d \lambda \nonumber \end{eqnarray}\] \[\begin{eqnarray} \alpha_{i, k} & := & \alpha_{i}(C_{k}) \nonumber \\ & = & \int_{\Lambda} S_{i}(\lambda) C_{k}(\lambda) \ d\lambda \label{chap01_01_04} \end{eqnarray}\] \[\begin{eqnarray} \sum_{k=1}^{3} \beta_{k} \alpha_{i, k} & = & \alpha_{i}(C) \nonumber \\ & = & \int_{\Lambda} S_{i}(\lambda) C(\lambda) \ d\lambda \label{chap01_01_05} \end{eqnarray}\]

\(\beta_{k}\) is obtained from \(\eqref{chap01_01_04}\) and \(\eqref{chap01_01_05}\).

Reference