Characterizing degree-sum maximal nonhamiltonian bipartite graphs
Definition
- $G[X, Y]$,
- bipartite graph
- $X, Y$,
- partite sets
$G$ is said to be balanced if $|X| = |Y|$.
■
Definition
- $P$,
- path
- $x, y \in G$,
- vertex
$xPy$ denote the path from $x$ to $y$ on $P$.
■
Defitnion
\[sigma_{2}(G) := \min \{ d_{G}(x) + d_{G}(y) \mid (x, y) \notin E(G) \} .\]If $G[X, Y]$ is a bipartite graph,
\[sigma_{2}^{2}(G[X, Y]) := \{ d_{G}(x) + d_{G}(y) \mid (x, y) \notin E(G), x \in X, y \in Y \} .\]■
Definition
\[1 \le t \le n - 1, \ H_{t, n-t} := K_{t, t} \cup K_{n-t, n-t}\]■
Proposition
- $n \ge 3$,
- $G$,
- nonhamiltonian graph
- $\sigma_{2}(G) = n -1$,
$G$ is either
- (1) two complete graphs intersecting in a single vertex
- (2) \(K_{\frac{n - 1}{2}, \frac{n+1}{2}} \subseteq G \subseteq K_{\frac{n-1}{2}} K_{\frac{n+1}{2}\)
■
Theorem 1
-$n \in N$,
- $G$,
- balanced bipartite graph
- $|V(G)| = 2n$,
- $2n \ge 4$
If $\sigma_{2}^{2}(G) > n$, $G$ is hamiltonian.
■
Theorem 2
- $G$
- a balanced nonhamiltonian bigraph
- $|V(G)| = 2n$,
If $\sigma_{2}^{2}(G) = n$, $G$ is one of
- (1) $G_{1}$,
- (2) $G_{2}$,
- (3) $K_{t,t} \cup K_{n-t,n-t} \subseteq G \subseteq H_{t, n-t}$,
with $1 \le t \le n - 1$.
proof
$\Box$