View on GitHub

memo

Characterizing degree-sum maximal nonhamiltonian bipartite graphs

Characterizing degree-sum maximal nonhamiltonian bipartite graphs

Definition

$G$ is said to be balanced if $|X| = |Y|$.

Definition

$xPy$ denote the path from $x$ to $y$ on $P$.

Defitnion

\[sigma_{2}(G) := \min \{ d_{G}(x) + d_{G}(y) \mid (x, y) \notin E(G) \} .\]

If $G[X, Y]$ is a bipartite graph,

\[sigma_{2}^{2}(G[X, Y]) := \{ d_{G}(x) + d_{G}(y) \mid (x, y) \notin E(G), x \in X, y \in Y \} .\]

Definition

\[1 \le t \le n - 1, \ H_{t, n-t} := K_{t, t} \cup K_{n-t, n-t}\]

Proposition

$G$ is either

Theorem 1

-$n \in N$,

If $\sigma_{2}^{2}(G) > n$, $G$ is hamiltonian.

Theorem 2

If $\sigma_{2}^{2}(G) = n$, $G$ is one of

with $1 \le t \le n - 1$.

proof

$\Box$

Reference