View on GitHub

memo

A Statistical Analysis of Probabilistic Counting Algorithms

A Statistical Analysis of Probabilistic Counting Algorithms

3 Order statistics

Maximal term sketch.

3.1 Continuous random variables

\[i \in \mathcal{I}, \ a_{i}(T) := \sum_{i=1}^{T} d_{t} 1_{\{i_{t} = i\}} .\]

What we want to calcualte is

\[c_{count} := \sum_{i \in \mathcal{I}} 1_{\{a_{i}(T) > 0\}} .\]

3.2

Proposition 1

\[c_{MLE} = \frac{ -m }{ \sum_{j=1}^{m} \log Y_{j} } .\]

proof

Log of the likelihood is

\[\begin{eqnarray} L(y_{1}, \ldots, y_{m}; c) & := & \log \prod_{j=1}^{m} f(y_{i}) \nonumber \\ & = & \sum_{j=1}^{m} \log c y_{i}^{c-1} \nonumber \\ & = & m\log c + (c - 1) \sum_{j=1}^{m} \log y_{i} . \nonumber \end{eqnarray}\] \[\begin{eqnarray} & & \frac{ \partial L(y_{1}, \ldots, y_{m}; c) }{ \partial c } = 0 \nonumber \\ & \Leftrightarrow & \frac{ m }{ c } + \sum_{j=1}^{m} \log y_{i} = 0 \nonumber \\ & \Leftrightarrow & c = + = \frac{ -m }{ \sum_{j=1}^{m} \log y_{i} } . \end{eqnarray}\]

$c_{MLE}$ converges in distribution $N(c, c^{2}/m)$ by MLE estimator.

$\Box$

Proposition 2

\[\begin{eqnarray} L(y_{1}, \ldots, y_{m}; c) & := & \log (\prod_{j=1}^{m} f(y)) \nonbumber \\ & = & \sum_{j=1}^{m} \log f(y) \end{eqnarray}\]

proof

$\Box$

Reference