A Statistical Analysis of Probabilistic Counting Algorithms
3 Order statistics
Maximal term sketch.
3.1 Continuous random variables
- $T \in \mathbb{N}$,
- terminal time
- $\mathcal{I}$,
- data types
- $(i_{t}, d_{t}) \ i_{t} \in \mathcal{I}, \ d_{t} \mathbb{Z}$ $(t = 1, \ldots, T)$
- $i_{t}$ observed data type at $t$
- $d_{t}$ quantity
What we want to calcualte is
\[c_{count} := \sum_{i \in \mathcal{I}} 1_{\{a_{i}(T) > 0\}} .\]3.2
Proposition 1
- $m \in \mathbb{N}$,
- $f(y; c) := cy^{c - 1}$ where $y \in (0, 1)$
- $Y_{i}$ whose p.d.f. is $f$
proof
Log of the likelihood is
\[\begin{eqnarray} L(y_{1}, \ldots, y_{m}; c) & := & \log \prod_{j=1}^{m} f(y_{i}) \nonumber \\ & = & \sum_{j=1}^{m} \log c y_{i}^{c-1} \nonumber \\ & = & m\log c + (c - 1) \sum_{j=1}^{m} \log y_{i} . \nonumber \end{eqnarray}\] \[\begin{eqnarray} & & \frac{ \partial L(y_{1}, \ldots, y_{m}; c) }{ \partial c } = 0 \nonumber \\ & \Leftrightarrow & \frac{ m }{ c } + \sum_{j=1}^{m} \log y_{i} = 0 \nonumber \\ & \Leftrightarrow & c = + = \frac{ -m }{ \sum_{j=1}^{m} \log y_{i} } . \end{eqnarray}\]$c_{MLE}$ converges in distribution $N(c, c^{2}/m)$ by MLE estimator.
$\Box$
Proposition 2
- $0 < k < c$,
- $h_{j} \sim U(0, 1)$,
- i.i.d. uniformly distributed on $(0, 1)$
- $Y_{j}$
- $k$-th order statistc of $h_{j}$
proof
$\Box$