Cocountable
Definition
- $X$
- set
$(X, \mathcal{T})$ is called cocountable topology/countable complement topology on $X$.
■
Remark
$(X, \mathcal{T})$ is top sp.
■
Proposition
- $X$
- set
- $(X, \mathcal{T})$
- cocountable topology
(1) If $X$ is uncoutanble, the cocountable topology is not hausdorff.
proof
$\Box$
Reference
- https://en.wikipedia.org/wiki/Cocountable_topology