Stone-Weierstrass Theorem
Weierstrass Approximation theorem
Theorem 1 Weierstrass
- $a < b < \infty$,
- $f \in C_{0}([a, b])$,
- real valued continuous function
- $\epsilon > 0$,
There exists polynomial $p:[a, b] \rightarrow \mathbb{R}$ such that
\[\norm{ f - p }_{\infty} < \epsilon .\]proof
$\Box$
Corollary 2
- $a < b < \infty$,
$C_{0}([a, b])$ is separable.
proof
Let
\[\begin{eqnarray} \mathcal{P}_{0} & := & \{ p(x) \mid p(x) = \sum_{k=0}^{n} a_{k}x^{k}, \ n \in \mathbb{Z}_{\ge 0}, \ a_{k} \in \mathbb{Q} \} \nonumber \\ \mathcal{P} & := & \{ p(x) \mid p(x) = \sum_{k=0}^{n} a_{k}x^{k}, \ n \in \mathbb{Z}_{\ge 0}, \ a_{k} \in \mathbb{R} \} \nonumber \end{eqnarray} .\]Let $p = \sum_{k=0}^{n}c_{k}x^{k} \in \mathcal{P}$ and $\epsilon > 0$ be fixed. For all $k \in [0:n]$, there exists $d_{k} \in \mathbb{Q}$ such that
\[\begin{eqnarray} \abs{ c_{k} - d_{k} } & = & \frac{1}{b^{k}(n + 1)} \epsilon . \nonumber \end{eqnarray}\]Let $q(x) := \sum_{k=0}^{n} d_{k}x^{k}$.
\[\begin{eqnarray} \abs{ p(x) - q(x) } & < & \sum_{k=0}^{n} \abs{c_{k} - d_{k}} \abs{x}^{k} \nonumber \\ & < & \sum_{k=0}^{n} \frac{\epsilon}{b^{k}(n + 1)} b^{k} \nonumber \\ & = & \sum_{k=0}^{n} \frac{\epsilon}{n + 1} \nonumber \\ & = & \epsilon \nonumber \end{eqnarray}\]By Weierstrass approximation theorem, $\mathcal{P}{0}$ is also dense in $C([a, b])$. Besides, $\mathcal{P}{0}$ is countable.
$\Box$
Stone-Weirastrass theorem
Theorem 3 Stone-Weirastrass theorem
proof
$\Box$
Reference
- Stone–Weierstrass theorem - Wikipedia
- https://www.math.cuhk.edu.hk/course_builder/1415/math3060/Chapter%203.%20Continuous%20Functions.pdf