Tightness
Definiton 1
- $(S, \rho)$,
- metric space
- $\Pi$,
- a family of probability measures on $(S, \mathcal{B}(\mathbb{R}^{n}))$,
$\Pi$ is said to be relatively compact if
\[\forall \{P_{n}\}_{n \in \mathbb{N}} \subseteq \Pi, \ \exists \{P_{i_{n}}\}_{n \in \mathbb{N}} \subseteq \{P_{n}\}_{n}, \ \exists P \ \text{ s.t. } P_{i_{n}} \overset{w}{\rightarrow} P .\]$\Pi$ is said to be tight if
\[\forall \epsilon > 0, \ \exists K \subseteq S \ \text{ s.t. } K \text{ is compact and } P(K) \ge 1 - \epsilon \ (\forall P \in \Pi) .\]■
Definition 2
- \((\Omega_{a}, \mathcal{F}_{a}, P_{a})\),
- probabilty spaces
- \(\{X^{a}\}_{a \in \Lambda}\),
- a family of $S$-valued r.v.s on $(\Omega_{a}, \mathcal{F}{a}, P{a})$
\(\{X^{a}\}_{a \in \Lambda}\) is said to be relatively compact if \(\{P(X^{a})^{-1}\}\) is relatively compact.
\(\{X^{a}\}_{a \in \Lambda}\) is said to be tight if \(\{P(X^{a})^{-1}\}\) is tight.
■
Theorem 3 Prohorov Theorem
- $(S, \rho)$,
- a compelte, separable metric space
- $\Pi$,
- a family of probability measures on $S$,
Then the following statements are equivalent;
(1) $\Pi$ is tight
(2) $\Pi$ is realatively compact.
proof
$\Box$
Definiton 4
- $T > 0$,
- $\delta > 0$,
- $\omega \in C[0, \infty)$,
is caleld the modulus of continuity on $[0, T]$.
■
Proposition 5
- (1) $m^{T}$ is continuous in $\omega \in C[0, \infty)$ under the metric $\rho$ defined in here.
- (2) $m^{T}$ is non-decreasing in $\delta$
- (3) for each $\omega \in C[0, \infty)$, $\lim_{\delta \searrow 0} m^{T}(\omega, \delta) = 0$.
proof
$\Box$