Stopping Time
Definition Stopping Time
- \((\Omega, \mathcal{F}, P, \{\mathcal{F}_{t}\}_{0 \le t})\),
- probablility space with a filtration
- $T: \Omega \rightarrow [0, \infty)$,
- r.v.
$T$ is said to be a stopping time of the filtration if
\[\{T \le t\} \in \mathcal{F}_{t}\]for every $t \in [0, \infty)$.
$T$ is said to be a optional time of the filtration if
\[\{T < t\} \in \mathcal{F}_{t}\]for every $t \in [0, \infty)$.
■
Definition hitting time
- $X: [0, \infty) \times \omega \rightarrow \mathbb{R}$
- stochastic process
- $A \subseteq \mathbb{R}$,
A stopping time
\[\tau_{A}(\omega) := \inf \{ t \in T \mid X_{t}(\omega) \in A \}\]is called a hitting time.
■
Lemmna
- $T, S: \Omega \rightarrow [0, \infty)$,
- stopping time
The followings are also stopping time;
- $A := \min(T, S)$,
- $B := \max(T, S)$,
- $C := T + S$,
proof
\[\begin{eqnarray} \{\min(T, S) \le t\} & = & \{T \le t\} \cup \{S \le t\} \nonumber \\ \{\max(T, S) \le t\} & = & \{T \le t\} \cap \{S \le t\} \nonumber \end{eqnarray}\]All of sets are $\mathcal{F}_{t}$ measurable sets.
$\Box$
Definition
- $T$,
- stopping time of the filtration \(\{\mathcal{F}_{t}\}\),
The $\sigma$-field $\mathcal{F}_{T}$ of events determined prior to the stotping time $T$ is defined
\[\mathcal{F}_{T} := \{ A \in \mathcal{F} \mid A \cap \{T \le t\} \in \mathcal{F}_{t}, \ t \ge 0 \} .\]■
Theorem Wald’s equation
- $\tau$,
- discrete stopping time
- $X_{n}$
- i.i.d. discrete stochastic process with expectation $E[X_{n}]$.
If $E[\tau] < \infty$ and $E[\abs{X}] < \infty$,
\[\mathrm{E} \left[ \sum_{n=1}^{\tau} X_{n} \right] = E[\tau] E[X]\]proof
$\Box$
Reference
- https://www.columbia.edu/~ks20/stochastic-I/stochastic-I-ST.pdf