View on GitHub

memo

Stopping Time

Stopping Time

Definition Stopping Time

$T$ is said to be a stopping time of the filtration if

\[\{T \le t\} \in \mathcal{F}_{t}\]

for every $t \in [0, \infty)$.

$T$ is said to be a optional time of the filtration if

\[\{T < t\} \in \mathcal{F}_{t}\]

for every $t \in [0, \infty)$.

Definition hitting time

A stopping time

\[\tau_{A}(\omega) := \inf \{ t \in T \mid X_{t}(\omega) \in A \}\]

is called a hitting time.

Lemmna

The followings are also stopping time;

proof

\[\begin{eqnarray} \{\min(T, S) \le t\} & = & \{T \le t\} \cup \{S \le t\} \nonumber \\ \{\max(T, S) \le t\} & = & \{T \le t\} \cap \{S \le t\} \nonumber \end{eqnarray}\]

All of sets are $\mathcal{F}_{t}$ measurable sets.

$\Box$

Definition

The $\sigma$-field $\mathcal{F}_{T}$ of events determined prior to the stotping time $T$ is defined

\[\mathcal{F}_{T} := \{ A \in \mathcal{F} \mid A \cap \{T \le t\} \in \mathcal{F}_{t}, \ t \ge 0 \} .\]

Theorem Wald’s equation

If $E[\tau] < \infty$ and $E[\abs{X}] < \infty$,

\[\mathrm{E} \left[ \sum_{n=1}^{\tau} X_{n} \right] = E[\tau] E[X]\]

proof

$\Box$

Reference