Stochastic Process
- \((\Omega, \mathcal{F}, P, \{\mathcal{F}_{t}\}_{0 \le t})\),
- probablity space with filtration
- \((\mathbb{R}^{d}, \mathcal{B}(\mathbb{R}^{d}))\),
- $d$-dimentional borrel space,
Definition. stochastic process
The collection of random variables \(X := \{X_{t} \mid 0 \le t < \infty\}\) which take value on \((\mathbb{R}^{d}, \mathcal{B}(\mathbb{R}^{d}))\) is called a stochastic process.,
Definition. sample path
- $\omega \in \Omega$,
- given
- $X$,
- a stochastic process
The map $t \mapsto X_{t}(\omega)$ is called a sample path/realizatoin, trajectory of the process $X$ associated with $\omega$.
Definition. equality
- $X, Y$
- stochastic process
$X$ and $Y$ are said to be same if
\[\forall t \in [0, \infty), \ \forall \omega \in \Omega, \ X_{t}(\omega) = Y_{t}(\omega) .\]Definition. modification
- $X, Y$,
- stochastic process
$Y$ is said to be modification of $X$ if
\[\forall t \in [0, \infty), \ P( X_{t} = Y_{t} ) = 1 .\]Definition. equality of finite dimensional distribution
- $X, Y$,
- stochastic process
$X$ and $Y$ are said to have the same finite-dimensional distributions if
\[\forall n \in \mathbb{N}, \ t_{1} < t_{2} < \cdots < t_{n}, \ \forall A \in \mathcal{B}(\mathbb{R}^{nd}), \ P( (X_{t_{1}}, \ldots, X_{t_{n}}) \in A ) = P( (Y_{t_{1}}, \ldots, Y_{t_{n}}) \in A ) .\]Definition. indistinguishable
- $X, Y$,
- stochastic process
$X$ and $Y$ are said to be indistinguishable if
\[P( X_{t} = Y_{t} \mid t \in [0, \infty) ) = 1 .\]Definition. measurable
- $X$,
- stochastic process
$X$ is said to be measurable if
\[(t, \omega) \mapsto X_{t}(\omega) : \left( [0, \infty) \times \Omega, \mathcal{B}([0, \infty) \otimes \mathcal{F}) \right) \mapsto (\mathbb{R}^{d}, \mathcal{B}(\mathbb{R}^{d}))\]is measurable.
Definition. RCLL
- $X$,
- stochastic process
- $\omega \in \Omega$,
The sample path of $X$ associated with $\omega$ is said to be càdlàg/RCLL if
\[\lim_{t \searrow s} X_{t} = X_{s}, \ \lim_{t \nearrow s} X_{t} < \infty .\](i.e. right-continuous on $[0, \infty)$ with finite left-hand limits on $(0, \infty)$
Definition. adapted
- $X$,
- stochastic process
The stochastic process $X$ is said to be adapted to the filtration \(\{\mathcal{F}_{t}\}\) if for every $t \ge 0$, $X_{t}$ is $\mathcal{F}_{t}$-measurable.
Definition. progressively measurable
- $X$,
- stochastic process
The stochastic process $X$ is said to be progressively measurable with respect to the filtration \(\{\mathcal{F}_{t}\}\) if for every $t \ge 0$
\[(s, \omega) \mapsto X_{s}(\omega) : \left( [0, t] \times \Omega, \mathcal{B}([0, t] \otimes \mathcal{F}_{t}) \right) \mapsto (\mathbb{R}^{d}, \mathcal{B}(\mathbb{R}^{d}))\]is measurable.