Donsker Invariance Principle
Definitoin 1
- $(\Omega, \mathcal{F}, P)$,
- $\sigma^{2} \in (0, \infty)$,
- \(\{\xi_{j}\}_{j \in \mathbb{N}\),
- I.I.D. sequence
- mean is 0
- variance is $\sigam$,
■
Theorem 1
proof
$\Box$
Theorem The Invariance Principle of Donsker
- $(\Omega, \mathcal{F}, P)$,
- $\sigma^{2} \in (0, \infty)$,
- \(\{\xi_{j}\}_{j \in \mathbb{N}\),
- I.I.D. sequence
- mean is 0
- variance is $\sigam$,
Then \(\{P_{n}\}_{n \in \mathbb{N}}\) converges weakly to a measure $P_{*}$ under which the coordinate mapping process $W_{t}(\omega) := \omega(t)$ is a standard one-dimensional Browninan motion.
proof
$\Box$