View on GitHub

memo

Continuous Markov

Continuous Markov

Definition

Def(Markov Process)

$(X_{t})_{t \ge 0}$ is said to be markov process with initial distribution $\mu$ over \((\Omega, \mathcal{F}, P)\) if

  1. \(P(X_{0} \in \Gamma) = \mu(\Gamma) \quad (\forall \Gamma \in \mathcal{B}(\mathbb{R}^{d})\),
  2. If \(s, t \ge 0\), \(\Gamma \in \mathcal{B}(\mathbb{R}^{d})\),
\[P(X_{s+t} \in \Gamma \mid \mathcal{F}_{s}) = P(X_{s+t} \in \Gamma \mid X_{s}) \quad \mathrm{a.s.}\]

Def(Markov family)

\((X_{t}^{x})_{t \ge 0}\) is said to be time-homogeneous markov family if

\[p(t, x, \Gamma) := P(X_{t}^{x} \in \Gamma) \quad ( t \ge 0, x \in \mathbb{R}^{d}, \Gamma \in \mathcal{B}(\mathbb{R}^{d}) ) .\] \[P(X_{0}^{x} = x) = 1 .\] \[P(X_{s+t}^{x} \in \Gamma \mid \mathcal{F}_{s}) = p(t, X_{s}^{x}, \Gamma) \quad \mathrm{a.s.}\]

The function $p$ defined in (1) is called transition function.

Reference