Continuous Markov
Definition
- \((\Omega, \mathcal{F}, P, (\mathcal{F}_{t})_{t \ge 0})\),
- probability space with fltration
Def(Markov Process)
- $\mu$
- Borel prob. measure over $\mathbb{R}^{d}$
$(X_{t})_{t \ge 0}$ is said to be markov process with initial distribution $\mu$ over \((\Omega, \mathcal{F}, P)\) if
- \(P(X_{0} \in \Gamma) = \mu(\Gamma) \quad (\forall \Gamma \in \mathcal{B}(\mathbb{R}^{d})\),
- If \(s, t \ge 0\), \(\Gamma \in \mathcal{B}(\mathbb{R}^{d})\),
■
Def(Markov family)
- $x \in \mathbb{R}^{d}$,
- given
\((X_{t}^{x})_{t \ge 0}\) is said to be time-homogeneous markov family if
- (1) the following function $p$ is borel measurable as a function of $x$
- (2) Satisfy
- (3) For $s, t \ge 0 $, $x \in \mathbb{R}^{d}$, $\Gamma \in \mathcal{B}(\mathbb{R}^{d})$,
The function $p$ defined in (1) is called transition function.
■