Order Statistics
- $n \in \mathbb{N}$,
- $X_{i} (i = 1, \ldots, n)$$ be random variables
Special cases are
\[X_{(1)} := \min \{X_{1}, \ldots, X_{n}\}\]and
\[X_{(n)} := \max \{X_{1}, \ldots, X_{n}\} .\]$X_{(k)}$ is a $k$-th order statistics.
Distributions
- $X_{i}$ is i.i.d. and continous
- $X_{i}$ has a p.d.f.
- The cumulative distribution of $X$ is $F_{X}$
The cumulative distribution of $k$-th order statistics is given by
\[\begin{equation} F_{X_{(k)}}(x) := \sum_{i=k}^{n} \left( \begin{array}{c} n \\ i \end{array} \right) (F_{X}(x))^{i} (1 - F_{X}(x))^{n - i} \label{equation_distribution_k_th_order_statistics} . \end{equation}\]The p.d.f. is
\[\begin{eqnarray} f_{X_{(k)}}(x) & = & \frac{d}{dx} \left( \sum_{j=k}^{n} \left( \begin{array}{c} n \\ j \end{array} \right) F(x)^{j} (1 - F(x))^{n-j} \right) \nonumber \\ & = & \sum_{j=k}^{n-1} \left( \begin{array}{c} n \\ j \end{array} \right) \left( j F(x)^{j-1} (1 - F(x))^{n-j} f(x) - f(x) (n-j) F(x)^{j} (1 - F(x))^{n-j -1} \right) + n F(x)^{n-1} f(x) \nonumber \\ & = & \sum_{j=k}^{n-1} f(x) \left( \frac{ n! }{ j!(n - j)! } j F(x)^{j-1} (1 - F(x))^{n-j} - \frac{ n! }{ j!(n - j)! } (n - j) F(x)^{j} (1 - F(x))^{n-j -1} \right) + n F(x)^{n-1} f(x) \nonumber \\ & = & \sum_{j=k}^{n-1} f(x) \left( \frac{ n! }{ (j - 1)!(n - j)! } F(x)^{j-1} (1 - F(x))^{n-j} - \frac{ n! }{ j!(n - j - 1)! } F(x)^{j} (1 - F(x))^{n- j - 1} \right) + n F(x)^{n-1} f(x) \nonumber \\ & = & f(x) n \left( \sum_{j=k-1}^{n-2} \frac{ (n - 1)! }{ j!(n - 1 - j)! } F(x)^{j} (1 - F(x))^{n-j-1} - \sum_{j=k}^{n-1} \frac{ (n - 1)! }{ j!(n - j - 1)! } F(x)^{j} (1 - F(x))^{n- j - 1} \right) + n F(x)^{n-1} f(x) \nonumber \\ & = & f(x) n \left( \sum_{j=k-1}^{n-2} \left( \begin{array}{c} n - 1 \\ j \end{array} \right) F(x)^{j} (1 - F(x))^{n-j-1} - \sum_{j=k}^{n-1} \left( \begin{array}{c} n - 1 \\ j \end{array} \right) F(x)^{j} (1 - F(x))^{n- j - 1} \right) + n F(x)^{n-1} f(x) \nonumber \\ & = & f(x) n \left( \begin{array}{c} n - 1 \\ k - 1 \end{array} \right) F(x)^{k - 1} (1 - F(x))^{n-k} - f(x) n \left( \begin{array}{c} n - 1 \\ n - 1 \end{array} \right) F(x)^{n - 1} + n F(x)^{n-1} f(x) \nonumber \\ & = & f(x) \frac{ n! }{ (k - 1)!(n - k)! } F(x)^{k - 1} (1 - F(x))^{n-k} \label{equation_pdf_k_th_order_statistics} \end{eqnarray}\]For $X_{(n)}$ and $X_{(1)}$, they are simply
\[F_{X_{(1)}}(x) := 1 - (1 - F_{X}(x))^{n}\]and
\[F_{X_{(n)}} := (F_{X}(x))^{n} .\]The p.d.f.s are
\[\begin{eqnarray} f_{X_{(1)}}(x) & = & f(x)n(1 - F(x))^{n-1} \nonumber \\ f_{X_{(n)}}(x) & = & nf(x)F(x)^{n-1} \end{eqnarray}\]The distribution of $X_{(k)}$ is the probablity of the event where at least $k$ of $X_{i}$ is less than $x$, which is equivalent to the event where the value which is less than $x$ occurs more than $k$ times in $n$ trials.
Proposition
- $a, b \in \mathbb{R}$, $c > 0$,
- $X_{i}$ is uniformly distirbuted in $[a, b]$
The p.d.f. of $F_{X_{(k)}}$ is given by
\[\begin{eqnarray} f_{X_{(k)}}(x) & = & \frac{ n! }{ (k - 1)!(n-k)! } x^{k-1}(1-x)^{n-k} \nonumber \\ & = & \frac{ 1 }{ B(k, n - k + 1) } x^{k-1}(1-x)^{n-k} \end{eqnarray}\]where $B(k ,n - k + 1)$ is the Beta function.
proof
From \eqref{equation_pdf_k_th_order_statistics},
\[\begin{eqnarray} x \in [a, b], \ f_{X_{(k)}}(x) & = & \frac{ n! }{ (k - 1)!(n - k)! } f(x) F(x)^{k-1} (1 - F(x))^{n-k} \nonumber \\ & = & \frac{ n! }{ (k - 1)!(n - k)! } \frac{ 1 }{ b - a } \left( \frac{ x - a }{ b - a } \right)^{k-1} \left( 1 - \frac{ x -a }{ b - a } \right)^{n-k} \nonumber \\ & = & \frac{ n! }{ (k - 1)!(n - k)! } \frac{ 1 }{ b - a } \left( \frac{ x - a }{ b - a } \right)^{k-1} \left( \frac{ b - x }{ b - a } \right)^{n-k} \nonumber \\ & = & \frac{ n! }{ (k - 1)!(n - k)! } \frac{ 1 }{ (b - a)^{n} } (x - a)^{k-1} (b - x)^{n-k} \end{eqnarray}\]Since
\[B(k, n - k + 1) = \frac{ (k - 1)!(n - k + 1 - 1)! }{ (k + n - k + 1 - 1)! } = \frac{ (k - 1)!(n - k)! }{ n! },\]the equation can be written
\[\begin{eqnarray} \frac{ 1 }{ B(k, n - k + 1) } \frac{ 1 }{ (b - a)^{n} } (x - a)^{k-1} (b - x)^{n-k} \end{eqnarray}\]$\Box$
Proposition
- $a, b, \in \mathbb{R}$, $c > 0$,
- $X_{i}$ is uniformly distirbuted in $[a, b]$
The MLE of
proof
$\Box$
Descrete case
- $n \in \mathbb{N}$,
- $X_{1}, \ldots, X_{n}$,
- i.i.d.
- $f$
- p.d.f. of $X$,
- $F$
- c.d.f. of $X$,
The c.d.f. of $X_{(k)}$ is the probability of the event where there are at most $n - k$ observations are greather than $x$
\[\begin{eqnarray} F_{X_{(k)}}(x) & = & \sum_{j=0}^{n-k} \left( \begin{array}{c} n \\ j \end{array} \right) \left( 1 - F(x) \right)^{j} F(x)^{n - j} . \end{eqnarray}\] \[\begin{eqnarray} P(X_{(k)} < x) & = & \sum_{j=0}^{n-k} \left( \begin{array}{c} n \\ j \end{array} \right) \left( 1 - F(x) + f(x) \right)^{j} (F(x) - f(x))^{n - j} . \end{eqnarray}\] \[\begin{eqnarray} f_{X_{(k)}}(x) & = & F_{X_{(k)}}(x) - P(X_{(k)} \le x) \nonumber \\ & = & \sum_{j=0}^{n-k} \left( \begin{array}{c} n \\ j \end{array} \right) \left( 1 - F(x) \right)^{j} F(x)^{n - j} - \sum_{j=0}^{n-k} \left( \begin{array}{c} n \\ j \end{array} \right) \left( 1 - F(x) + f(x) \right)^{j} (F(x) - f(x))^{n - j} \nonumber \\ & = & \sum_{j=0}^{n-k} \left( \begin{array}{c} n \\ j \end{array} \right) \left( \left( 1 - F(x) \right)^{j} F(x)^{n - j} - \left( 1 - F(x) + f(x) \right)^{j} (F(x) - f(x))^{n - j} \right) \end{eqnarray}\]