Skorokhod Representation Theorem
- $(\Omega, \mathcal{F}, P) := ([0, 1], \mathcal{B}([0, 1]), P)$,
- $\mathcal{B}([0, 1])$ borrel sigma algebra over $[0, 1]$,
- $P$ is Lebesgue measure over $[0, 1]$
- the triplet is probability space
- $F: \mathbb{R} \rightarrow [0, 1]$
- non decreasing
- $\lim_{x \rightarrow \infty}F(x) = 1$,
- $\lim_{x \rightarrow -\infty}F(x) = 0$,
- right continuous
- (a)
- (b) $X^{-1}$ has distribution function $F$,
- (c) $X^{+}$ has distribution function $F$, and
proof
(a)
We first remember that
\[\begin{eqnarray} (z > X^{-}(\omega)) & \Rightarrow & (F(z) \ge \omega) . \nonumber \end{eqnarray}\]Indeed, suppose that $F(z) < \omega$ for some $\omega$. There exists $z^{\prime} \in A^{-}(\omega)$ such that $X^{-}(\omega) < z^{\prime} < z$. By monotoncity, we have $F(X^{-}(\omega)) \le F(z^{\prime}) \le F(z) < \omega$. However $z^{\prime} \in A^{-}(\omega)$ contradicts $F(z^{\prime}) < \omega$.
We can take a sequence \(\{z_{n}\}_{n \in \mathbb{N}} \subset A^{-}(\omega)\) which converges to $X^{-}(\omega)$. By $F(z^{n}) \ge \omega$ and right continuity of $F$, we have
\[\begin{eqnarray} F(X^{-}(\omega)) \ge \omega . \nonumber \end{eqnarray}\]Combining above, we have
\[(X^{-}(\omega) \le c) \Rightarrow ( \omega \le F(X^{-}(\omega)) \le F(c) ) .\]Thus,
\[(\omega \le F(c)) \Leftrightarrow (X^{-}(\omega) \le c)\]so that
\[P(X^{-} \le c) = F(c) .\]$\Box$