Euler Maruyama Method
- $X: [0, T] \times \Omega \rightarrow \mathbb{R}$,
- $X_{0}$,
- initial value
- $d \in \mathbb{N}$,
- $W_{i}(t)$,
- $d$-factor Brownian motion.
- $n \in \mathbb{N}$,
- dimension of $X$,
- $V_{i}: \mathbb{R} \rightarrow \mathbb{R}$,
Method
\(\{Z_{i}^{n}\}_{i=1, \ldots, d}^{n=1, \ldots, N}\) is standard normal random variables. \(\{Z_{i}^{n}\}_{i=1, \ldots, d}^{n=1, \ldots, N}\) are independent.
\[\begin{eqnarray} Y_{0} & := & X_{0} \\ Y_{n+1} & = & Y_{n} + V_{0}(Y_{n}) h + Z_{i}^{n} + \sum_{i=1}^{d} V_{i}(Y_{n}) Z_{i}^{n} \end{eqnarray}\] \[\begin{eqnarray} \end{eqnarray}\]