View on GitHub

memo

Euler Maruyama Method

Euler Maruyama Method

\[\begin{eqnarray} X(t) & = & X_{0} + \int_{0}^{t} V_{0}(X(s)) \ ds + \sum_{i=1}^{d} \int_{0}^{t} V_{i}(X(s)) \ dW(s) \nonumber \end{eqnarray}\]

Method

\(\{Z_{i}^{n}\}_{i=1, \ldots, d}^{n=1, \ldots, N}\) is standard normal random variables. \(\{Z_{i}^{n}\}_{i=1, \ldots, d}^{n=1, \ldots, N}\) are independent.

\[\begin{eqnarray} Y_{0} & := & X_{0} \\ Y_{n+1} & = & Y_{n} + V_{0}(Y_{n}) h + Z_{i}^{n} + \sum_{i=1}^{d} V_{i}(Y_{n}) Z_{i}^{n} \end{eqnarray}\] \[\begin{eqnarray} \end{eqnarray}\]

Reference