ridder method
Symbol
Definition
Problem
$f(x) = 0$を満たす$x \in \mathbb{R}$を見つける問題。
Algorithm
2点を与える$(x_{0}, f(x_{1}))$, $(x_{1}, f(x_{1}))$とする。 まず、
\[g(x) := f(x) e^{(x - x_{0})Q}\]とおく。 Ridder methodは$f$ではなく$g$に対するfalse position methodである。 $x_{2} := (x_{1} - x_{0}) / 2$とすると、 $g(x_{0}) = f(x_{0})$, $g(x_{1}) = f(x_{1})e^{(x_{1} - x_{0}) Q}$, $g(x_{2}) = f(x_{2})e^{(x_{1} - x_{0}) Q / 2}$となる。 $Q$は$g(x_{0})$, $g(x_{1})$の線形補間と$g(x_{2})$が等しくなるようにとる。
\[\begin{eqnarray} & & g(x_{2}) = \frac{1}{2} (g(x_{0}) + g(x_{1})) \nonumber \\ & \Leftrightarrow & f(x_{2}) e^{(x_{1} - x_{0}) Q / 2} = \frac{1}{2} ( f(x_{0}) + f(x_{1}) e^{(x_{1} - x_{0}) Q} ) \nonumber \\ & \Leftrightarrow & f(x_{1}) e^{(x_{1} - x_{0}) Q} - 2f(x_{2}) e^{(x_{1} - x_{0}) Q / 2} + f(x_{0}) = 0 \end{eqnarray}\]上式は$e^{Q}$についての2次方程式になっている。 これを解くと、
\[\begin{eqnarray} e^{Q} & = & \frac{ e^{(x_{1} - x_{0})} f(x_{2}) \pm \sqrt{(f(x_{2})e^{(x_{1} - x_{0})})^{2} - e^{(x_{1} - x_{0})}f(x_{1}) f(x_{0}) } }{ f(x_{1})e^{(x_{1} - x_{0})} } \nonumber \\ & = & \frac{ f(x_{2}) \pm \sqrt{f(x_{2})^{2} - f(x_{1}) f(x_{0}) } }{ f(x_{1})e^{(x_{1} - x_{0})/2} } \nonumber \end{eqnarray}\]より
\[\begin{eqnarray} e^{(x_{1} - x_{0}) Q / 2} & = & \frac{ f(x_{2}) \pm \sqrt{f(x_{2})^{2} - f(x_{1}) f(x_{0}) } }{ f(x_{1}) } \nonumber \end{eqnarray}\]となる。 $(x_{0}, g(x_{0}))$, $(x_{2}, g(x_{2}))$に対してfalse position法を適用する。 つまり、2点の線形補間が$x$軸と交差する点が$x_{3}$となる。
\[\begin{eqnarray} x_{3} & := & x_{2} - g(x_{2}) \frac{ x_{2} - x_{0} }{ g(x_{2}) - g(x_{0}) } \nonumber \\ & = & x_{2} - f(x_{2}) e^{(x_{2} - x_{0}) Q /2} \frac{ x_{2} - x_{0} }{ f(x_{2}) e^{(x_{1} - x_{0}) Q / 2} - f(x_{0}) } \nonumber \\ & = & x_{2} - f(x_{2}) e^{(x_{2} - x_{0}) Q /2} \frac{ x_{2} - x_{0} }{ f(x_{2}) e^{(x_{1} - x_{0}) Q / 2} - f(x_{0}) } \nonumber \\ & = & x_{2} - f(x_{2}) \frac{ f(x_{2}) \pm \sqrt{f(x_{2})^{2} - f(x_{1}) f(x_{0}) } }{ f(x_{1}) } \frac{ x_{2} - x_{0} }{ f(x_{2}) \frac{ f(x_{2}) \pm \sqrt{f(x_{2})^{2} - f(x_{1}) f(x_{0}) } }{ f(x_{1}) } - f(x_{0}) } \nonumber \\ & = & x_{2} - f(x_{2}) ( f(x_{2}) \pm \sqrt{f(x_{2})^{2} - f(x_{1}) f(x_{0}) } ) \frac{ x_{2} - x_{0} }{ f(x_{2}) ( f(x_{2}) \pm \sqrt{f(x_{2})^{2} - f(x_{1}) f(x_{0}) } ) - f(x_{0}) f(x_{1}) } \nonumber \\ & & - \frac{ ( x_{2} - x_{0} ) f(x_{0}) f(x_{1}) }{ f(x_{2}) ( f(x_{2}) \pm \sqrt{f(x_{2})^{2} - f(x_{1}) f(x_{0}) } ) - f(x_{0}) f(x_{1}) } + \frac{ ( x_{2} - x_{0} ) f(x_{0}) f(x_{1}) }{ f(x_{2}) ( f(x_{2}) \pm \sqrt{f(x_{2})^{2} - f(x_{1}) f(x_{0}) } ) - f(x_{0}) f(x_{1}) } \nonumber \\ & = & x_{0} + \frac{ ( x_{2} - x_{0} ) f(x_{0}) f(x_{1}) }{ f(x_{2})^{2} - f(x_{0}) f(x_{1}) \pm f(x_{2}) \sqrt{f(x_{2})^{2} - f(x_{1}) f(x_{0}) } } \end{eqnarray}\]