Low Discrepancy Sequence
- $N \in \mathbb{N}$,
- the number of points,
- \(\mathcal{P} := \{x_{1}, x_{2}, \ldots\} \subset [0, 1)^{s}\),
- point set
- $1_{A}$,
- indicator function of a subset $A$,
- $s \in \mathbb{N}$,
- dimension of integrand
- $f:[0, 1]^{s} \rightarrow \mathbb{R}$,
- integrand
Definition. local discrepancy
- $\mathcal{P}$,
- $\mathbf{t}=(t_{1}, \ldots, t_{s}) \in [0, 1)^{s}$,
Local discrepancy function $\Delta_{\mathcal{P}}^{N}(\mathbf{t})$ is defined by
\[\begin{equation} \Delta_{\mathcal{P}}^{N}(\mathbf{t}) := \frac{1}{N} \sum_{n=1}^{N} 1_{[\mathbf{0},\mathbf{t})}(x_{n}) - \prod_{i=1}^{s}t_{i} \end{equation}\]where $[\mathbf{0}, \mathbf{t}):=\prod_{i=1}^{s}[0,t_{i})$.
Definition. discrepancy
\[\begin{equation} D_{N}(\mathcal{P}) := \sup_{ \mathbf{y},\mathbf{z} \in [0, 1)^{s}; \mathbf{y} < \mathbf{z} } \left| \frac{1}{N} \sum_{n=1}^{N} 1_{[\mathbf{y},\mathbf{z})}(x_{n}) - \prod_{i=1}^{s}(z_{i} - y_{i}) \right|. \end{equation}\]is called $N$-points discrepnacy of point set $\mathcal{P}$.
Definition. $L_{p}$-discrepancy
\(\begin{equation} L_{p}^{N}(\mathcal{P}) := \|\Delta_{\mathcal{P}}^{N}\|_{L_{p}} = \left( \int_{[0,1]^{s}} | \Delta_{\mathcal{P}}^{N}(\mathbf{t}) | ^{p} \ d \mathbf{t} \right)^{1/p}. \end{equation}\)
is called $N$-points $L_{p}$-discrepancy $L_{p}^{N}(\mathcal{P})$ of point set $\mathcal{P}$. In particular, if $p=\infty$, we say star-discrepancy, denoted by $D_{N}^{*}(\mathcal{P})$.
Definition. low-discrepancy sequence
$\mathcal{P}$ is said to be low-discrepancy sequence if
\[\begin{equation} D_{N}^{*}(\mathcal{P}) \le O \left( \frac{(\log N)^{s}}{N} \right) \quad (\forall N \in \mathbb{N}). \end{equation}\]The following theorem [1] show the relation between Low-discrepancy sequence $\mathcal{P}$ and numerical error of integration.
Theorem. Koksma-Hlawska inequality
- $f:[0, 1]^{s} \rightarrow \mathbb{R}$,
If $f$ Hardy-Krause varidation is bounded (i.e. $V(f) < \infty$), then for every $N \in \mathbb{N}$,
\[\begin{equation} \left| \frac{1}{N} \sum_{n=1}^{N} f(x_{n}) - \int_{[0,1]^{s}} f(u) \ d u \right| \le V(f) D_{N}^{*}(\mathcal{P}) . \end{equation}\]Below is immidate consequence of the Koksma-Hlawska inequality.
Corollary.
- $\mathcal{P}$
- low-discrepancy sequence
Then $\forall N \in \mathbb{N}$
\[\begin{equation} \left| \frac{1}{N} \sum_{n=1}^{N} f(x_{n}) - \int_{[0,1]^{s}} f(u) \ d u \right| = O \left( \frac{(\log N)^{s}}{N} \right) . \end{equation}\]Remark.
In QMC, The range of integration must be within $[0, 1]^{s}$. If integrand is not within the range, integration by substitution is need to be applied. In QMC, it is emprically well-known that the lower dimension $s$ of the integrand is, the faster convergence is achieved.
The theorem [1] below imply the relation of discrepancy and star-discrepancy.
Theorem.
- $\mathcal{P}$
- low-discrepancy sequence
Then for every $N \in \mathbb{N}$,
\[\begin{equation} D_{N}^{*}(\mathcal{P}) \le D_{N}(\mathcal{P}) \le 2^{s}D_{N}^{*}(\mathcal{P}) . \end{equation}\]Reference
- [1] H. Niederreiter, Random number generation and quasi-Monte Carlo methods, Vol. 63. Philadelphia: Society for Industrial and Applied mathematics, 1992.