View on GitHub

memo

Low Discrepancy Sequence

Low Discrepancy Sequence

Definition. local discrepancy

Local discrepancy function $\Delta_{\mathcal{P}}^{N}(\mathbf{t})$ is defined by

\[\begin{equation} \Delta_{\mathcal{P}}^{N}(\mathbf{t}) := \frac{1}{N} \sum_{n=1}^{N} 1_{[\mathbf{0},\mathbf{t})}(x_{n}) - \prod_{i=1}^{s}t_{i} \end{equation}\]

where $[\mathbf{0}, \mathbf{t}):=\prod_{i=1}^{s}[0,t_{i})$.

Definition. discrepancy

\[\begin{equation} D_{N}(\mathcal{P}) := \sup_{ \mathbf{y},\mathbf{z} \in [0, 1)^{s}; \mathbf{y} < \mathbf{z} } \left| \frac{1}{N} \sum_{n=1}^{N} 1_{[\mathbf{y},\mathbf{z})}(x_{n}) - \prod_{i=1}^{s}(z_{i} - y_{i}) \right|. \end{equation}\]

is called $N$-points discrepnacy of point set $\mathcal{P}$.

Definition. $L_{p}$-discrepancy

\(\begin{equation} L_{p}^{N}(\mathcal{P}) := \|\Delta_{\mathcal{P}}^{N}\|_{L_{p}} = \left( \int_{[0,1]^{s}} | \Delta_{\mathcal{P}}^{N}(\mathbf{t}) | ^{p} \ d \mathbf{t} \right)^{1/p}. \end{equation}\)

is called $N$-points $L_{p}$-discrepancy $L_{p}^{N}(\mathcal{P})$ of point set $\mathcal{P}$. In particular, if $p=\infty$, we say star-discrepancy, denoted by $D_{N}^{*}(\mathcal{P})$.

Definition. low-discrepancy sequence

$\mathcal{P}$ is said to be low-discrepancy sequence if

\[\begin{equation} D_{N}^{*}(\mathcal{P}) \le O \left( \frac{(\log N)^{s}}{N} \right) \quad (\forall N \in \mathbb{N}). \end{equation}\]

The following theorem [1] show the relation between Low-discrepancy sequence $\mathcal{P}$ and numerical error of integration.

Theorem. Koksma-Hlawska inequality

If $f$ Hardy-Krause varidation is bounded (i.e. $V(f) < \infty$), then for every $N \in \mathbb{N}$,

\[\begin{equation} \left| \frac{1}{N} \sum_{n=1}^{N} f(x_{n}) - \int_{[0,1]^{s}} f(u) \ d u \right| \le V(f) D_{N}^{*}(\mathcal{P}) . \end{equation}\]

Below is immidate consequence of the Koksma-Hlawska inequality.

Corollary.

Then $\forall N \in \mathbb{N}$

\[\begin{equation} \left| \frac{1}{N} \sum_{n=1}^{N} f(x_{n}) - \int_{[0,1]^{s}} f(u) \ d u \right| = O \left( \frac{(\log N)^{s}}{N} \right) . \end{equation}\]

Remark.

In QMC, The range of integration must be within $[0, 1]^{s}$. If integrand is not within the range, integration by substitution is need to be applied. In QMC, it is emprically well-known that the lower dimension $s$ of the integrand is, the faster convergence is achieved.

The theorem [1] below imply the relation of discrepancy and star-discrepancy.

Theorem.

Then for every $N \in \mathbb{N}$,

\[\begin{equation} D_{N}^{*}(\mathcal{P}) \le D_{N}(\mathcal{P}) \le 2^{s}D_{N}^{*}(\mathcal{P}) . \end{equation}\]

Reference