Probability Theory Integration by substitution
- $(\Omega, \mathcal{F}, P)$,
- $d \in \mathbb{N}$,
- $A, B \subseteq \mathbb{R}^{d}$,
- open
- $T: A \rightarrow B$
- injection
- $C^{1}$
- Jacobian $J_{T}(x) \neq 0 \ (x \in A)$
- $Y:\Omega \rightarrow \mathbb{R}^{d}$,
- r.v.
- $p_{Y}$,
- p.d.f of $Y$
- $X:\Omega \rightarrow \mathbb{R}^{d}$,
- r.v.
- $p_{X}$,
- p.d.f of $Y$
- p.d.f of $X$
- $X = T^{-1}(Y) \ \text{a.s.}$,
- r.v.