Quadratic Programming
Definition 1 Quradatic Programming
- $c \in \mathbb{R}^{n}$,
- $x \in \mathbb{R}^{n}$,
- $a_{i} \in \mathbb{R}^{n}$,
- $G$,
- $n \times n$ symmetric matrix
- $\mathcal{I}_{1}$,
- finite indice
- $\mathcal{I}_{2}$,
- finite indice
■
Remark
$G$ is a hessian matrix of $q(x)$.
■
Definition 2
If $G$ is positive semidefinite, we say \(\eqref{quadratic_programming_definition}\) is a convex QP.
If $G$ is positive definite, we say \(\eqref{quadratic_programming_definition}\) is a strictly convex QP.
If $G$ is an indefinite matrix, we say \(\eqref{quadratic_programming_definition}\) is a nonconvex QP.
■
Algorithm
Reference
- Quadratic programming - Wikipedia
- Delbos, F., & Gilbert, J. (2003). Global linear convergence of an augmented Lagrangian algorithm for solving convex quadratic optimization problems, 12(1), 45–69. Retrieved from http://hal.archives-ouvertes.fr/inria-00071556/
- Kraft, D. (n.d.). A Software Package for Sequential Quadratic Programming.