View on GitHub

memo

Quadratic Programming

Quadratic Programming

Definition 1 Quradatic Programming

\[\begin{align} \min_{x} & & & q(x) := \frac{1}{2} x^{\mathrm{T}}Gx + x^{\mathrm{T}}c \ \label{quadratic_programming_definition} \\ \mathrm{subject\ to} & & & a_{i}^{\mathrm{T}}x = b_{i} \quad i \in \mathcal{I}_{1} \\ & & & a_{i}^{\mathrm{T}}x \ge b_{i} \quad i \in \mathcal{I}_{2} \end{align}\]

Remark

$G$ is a hessian matrix of $q(x)$.

Definition 2

If $G$ is positive semidefinite, we say \(\eqref{quadratic_programming_definition}\) is a convex QP.

If $G$ is positive definite, we say \(\eqref{quadratic_programming_definition}\) is a strictly convex QP.

If $G$ is an indefinite matrix, we say \(\eqref{quadratic_programming_definition}\) is a nonconvex QP.

Algorithm

Reference