Numerical Integration
Problem
- $N \in \mathbb{N}$,
- $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$,
- integralble
The numerical integrator $Q[a, b]$ is an approximation of $I$. The numerical error $\epsilon$ of the approximation is defined by
\[\epsilon \approx \left| I - Q[a, b] \right| .\]Methods
- Simpson rules
- Closed Newton-Cotes Formulas
##
- $f:[a, b] \rightarrow \mathbb{R}$,
- $f:[a, b] \in C_{0}[a, b]$,
Lagrange interpolation
Let
- $n \in \mathbb{N}$,
- \((x_{i}, y_{i}) \in \mathbb{R}^{2}\),
- $i = 0, \ldots, n$,
Find polynomials
\[p_{n}(x) := \sum_{i=0}^{n} c_{i} x^{i}\]such that
\[y_{i} = p_{n}(x_{i}) .\]The problem is equivalent to
\[\begin{eqnarray} \left( \begin{array}{ccccc} 1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n} \\ \vdots \\ 1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n} \end{array} \right) \left( \begin{array}{c} c_{0} \\ \vdots \\ c_{n} \end{array} \right) & = & \left( \begin{array}{c} y_{0} \\ \vdots \\ y_{n} \end{array} \right) \nonumber \\ Vc & = & y . \nonumber \end{eqnarray}\]If $\mathrm{det}V \neq V$,
\[\begin{eqnarray} L_{i}(x) & := & \frac{ F_{n}(x) }{ (x - x_{i}) F_{n}^{\prime}(x_{i}) } \nonumber \\ & = & \prod_{k=0, k \neq i}^{n} \frac{ x - x_{k} }{ x_{i} - x_{k} } \quad (i = 0, \ldots, n) . \nonumber \end{eqnarray}\]$L_{i}(x)$ is polynomial with degree $n$.
\[L_{i}(x_{i}) := \begin{cases} 1 & (i = j) \\ 0 & (i \neq j) \end{cases} \quad (i, j = 0, \ldots, n) .\]Thus, if we take $p_{n}$ as
\[p_{n}(x; x_{i}, y_{i}) = \sum_{i=0}^{n} y_{i} L_{i}(x) .\]##
\[\begin{eqnarray} x_{i} & := & a + ih \quad (i = 0, \ldots, n) \nonumber \\ h & := & \frac{ b - a }{ n } \nonumber \end{eqnarray} .\] \[\begin{eqnarray} Q(f) & := & Q(p_{n}(\cdot; x_{i}, f(x_{i}))) \nonumber \\ & := & \int_{a}^{b} p_{n}(x) \ dx \nonumber \\ & = & \sum_{i=0}^{n} \alpha_{i} f(x_{i}) , \nonumber \\ \alpha_{i} & := & \int_{a}^{b} L_{i}(x) \ dx \nonumber \\ & = & \int_{a}^{b} \prod_{j=0, j \neq i}^{n} \frac{ x - x_{j} }{ x_{i} - x_{j} } \ dx \nonumber \\ & = & \int_{0}^{n} \prod_{j=0, j \neq i}^{n} \frac{ (a + th) - x_{j} }{ x_{i} - x_{j} } \ dt \quad (\because x = a + t h) \nonumber \\ & = & \int_{0}^{n} \prod_{j=0, j \neq i}^{n} \frac{ t - j }{ i - j } h \ dt \quad (\because x_{i} = a + i h) \nonumber \\ & = & \frac{ 1 }{ \prod_{j=0, j \neq i}^{n} (i - j) } \int_{0}^{n} \frac{ (t - i) \prod_{j=0, j \neq i}^{n} (t - j) }{ (t - i) } h \ dt \nonumber \\ & = & \frac{ 1 }{ \prod_{j=0, j \neq i}^{n} (i - j) } \int_{0}^{n} \frac{ \prod_{j=0}^{n} (t - j) }{ (t - i) } h \ dt \nonumber \\ & = & \frac{ 1 }{ i! (i - (i + 1)) \cdots (i - n) } \int_{0}^{n} \frac{ \prod_{j=0}^{n} (t - j) }{ (t - i) } h \ dt \nonumber \\ & = & (-1)^{n-i} \frac{ h }{ (n - i)! i! } \int_{0}^{n} \frac{ \prod_{j=0}^{n} (t - j) }{ (t - i) } \ dt \nonumber \\ & = & (-1)^{n-i} \frac{ h }{ n! } \left( \begin{array}{c} n \\ i \end{array} \right) \int_{0}^{n} \frac{ \prod_{j=0}^{n} (t - j) }{ t - i } \ dt . \end{eqnarray}\]This approximation called closed Newton-Coretes formula.
Let us see more specific example. Suppose that $n = 1$.
\[\begin{eqnarray} x_{0} & = & a \nonumber \\ x_{1} & = & b \nonumber \\ h & := & b - a \nonumber \\ \alpha_{0} & := & \frac{ h }{ 2 } \nonumber \\ \alpha_{1} & := & \frac{ h }{ 2 } \nonumber \end{eqnarray}\]Therefore,
\[\begin{eqnarray} Q_{1}(f) & := & \sum_{i=0}^{1} \alpha_{i} f(x_{i}) \nonumber \\ & = & \frac{h}{2} (f(a) + f(b)) \nonumber \\ & =: & T(f) . \nonumber \end{eqnarray}\]Suppose that $n = 2$.
\[\begin{eqnarray} x_{0} & := & a \nonumber \\ x_{1} & := & c \nonumber \\ x_{2} & := & b \nonumber \\ h & := & \frac{ b - a }{ 2 } \nonumber \\ \alpha_{0} & := & \frac{h}{3} \nonumber \\ \alpha_{1} & := & \frac{4h}{3} \nonumber \\ \alpha_{2} & := & \frac{h}{3} \nonumber \end{eqnarray}\]Therefore,
\[\begin{eqnarray} S(f) & := & Q_{2}(f) \nonumber \\ & := & \sum_{i=0}^{2} \alpha_{i} f(x_{i}) \nonumber \\ & = & \frac{h}{3} \left( f(a) + 4 f(c) + f(b) \right) . \nonumber \end{eqnarray}\]This formula is called simpson rule.
Theorem
- $f \in C^{2}[a, b]$,
- $f \in C^{4}[a, b]$,
proof
\[\begin{eqnarray} \xi(y) & := & y + \frac{ (b + a) }{ 2 } \nonumber \\ k & := & \frac{ b - a }{ 2 } \nonumber \\ \phi(y) & := & f(\xi(y)) . \nonumber \end{eqnarray}\] \[\begin{eqnarray} M & := & \norm{ f^{\prime\prime} }_{L^{\infty}[a, b]} \nonumber \\ & = & \norm{ \phi^{\prime\prime} }_{L^{\infty}[k, k]} \nonumber \\ g(k) & := & I(f) - T(f) \nonumber \\ & = & \int_{-k}^{k} \phi(y) \ dy - k \left( \phi(-k) + \phi(k) \right) \nonumber \end{eqnarray}\]Since for $t \in [0, k]$,
\[g^{\prime}(t) := -t \left( \phi^{\prime}(t) - \phi^{\prime}(-t) \right) ,\]By fundamental theorem of calculus,
\[\begin{eqnarray} \abs{ g^{\prime}(t) } & := & \abs{ -t \int_{-t}^{t} \phi^{\prime\prime}(s) \ ds } \nonumber \\ & \le & t \int_{-t}^{t} \abs{ \phi^{\prime\prime}(s) } \ ds \nonumber \\ & \le & 2 t^{2} M . \nonumber \end{eqnarray}\]Since $g(0) = 0$,
\[\begin{eqnarray} \abs{ g(k) } & = & \abs{ g(k) - g(0) } \nonumber \\ & \le & \int_{0}^{k} \abs{ g^{\prime}(s) } \ ds \nonumber \\ & \le & 2 M \int_{0}^{k} s^{2} \ ds \nonumber \\ & = & \frac{ 2 k^{3} }{ 3 } M \nonumber \\ & = & \frac{ (b - a)^{3} }{ 12 } \abs{f^{(2)}}_{L^{\infty}[a, b]} . \nonumber \end{eqnarray}\]Compound trapezoidal rule
\[\begin{eqnarray} h & := & \frac{ b - a }{ h } \nonumber \\ x_{j} & := & a + jh \quad (j = 0, \ldots, n) \nonumber \end{eqnarray}\]By applying trapezoidal rule to \([x_{i-1}, x_{i}]\),
\[\begin{eqnarray} I(f) & \approx & \sum_{i=1}^{n} T(f; x_{i-1}, x_{i}) \nonumber \\ & = & \sum_{i=1}^{n} T(f; x_{i-1}, x_{i}) \end{eqnarray}\]Improper Integral
Let’s consider the following problem.
- $a, b \in \bar{\mathbb{R}}$,
- $a < b$ and ($a = \infty$ or $b = \infty$)
- $f: [a, b] \rightarrow \mathbb{R}$,
We say an integral $I$ is improper if one of the following conditions satisfies
- integrand goes to a finite limitting value at finite upper and lower limits, but cannot be evaluated right on one of those limits
- e.g. $\sin(x) / x \rightarrow 1 \quad (x \rightarrow 0)$,
- upper limit is $\infty$, lower limit is $-\infty$,
- i.e. $f(b) = \infty$, or $f(a) = \infty$,
- integrand has integrable singularity at either upper limit or lower limit
- e.g. $x^{-1/2}$ at 0 ($x^{-1/2} \rightarrow \infty$ as $x \rightarrow 0$,
- integrand has integrable singularity between lower limit and upper limit
- e.g. $x^{-1/2} \rightarrow 0$,
We will consider four cases
(1) Finite interval
\[a, b \in (-\infty, \infty)\](1-1) integrable singurarity
\[\exists c \in (a, b) \text{ s.t. } f(c) \text{ is integrable singularity} .\](1-2) integrable singularity
\[\exists c \in (a, b) \text{ s.t. } f(c) \notin \{-\infty, \infty\} .\](1-2-1)
\[f(a) \neq - \infty, \ f(b) \neq \infty\]Integrate over $[a, b]$ with Closed Trapezoidal.
(1-2-2)
\[f(a) = - \infty, \ f(b) \neq \infty\]Integrate over $(a, b]$ with Open/Semi-oepn Trapezoidal.
(1-2-3)
\[f(a) \neq - \infty, \ f(b) = \infty\]Integrate over $[a, b)$ with Open/Semi-oepn Trapezoidal.
(1-2-4)
\[f(a) = - \infty, \ f(b) = \infty\]Integrate over $(a, b)$ with Open/Semi-oepn Trapezoidal.
(2) Left limit is infinite
(2-1) $a = -\infty, b \neq 0$,
Apply $x(t) = 1/t$ to integrand, then go to (1).
(2-2) $a = -\infty, b \neq 0$
Apply $x(t) = 1/(1 + exp(-t))$ to integrand, then go to (1).
(3) Right limit is infinite
(3-1) $a \neq 0, b \neq \infty$,
Apply $x(t) = 1/t$ to integrand, then go to (1).
(3-2) $a = 0, b = \infty$
Apply $x(t) = 1/(1 + exp(-t))$ to integrand, then go to (1).
(4) Left and Right limit is infinite
Apply $x(t) = 1/(1 + exp(-t))$ to integrand, then go to (1).
(i) Variable transformations $x(t) = 1/t$
- \((-\infty, 0) \Rightarrow (0, 1/b)\),
- \((0, \infty) \Rightarrow (1/a, 0)\),
the substition $x(t) = 1 / t$ yields
\[\begin{eqnarray} \int_{a}^{b} f(x) \ dx & = & - \int_{a}^{b} \frac{1}{t^{2}} f(\frac{1}{t}) \ dt \nonumber \\ & = & \int_{1/b}^{1/a} \frac{1}{t^{2}} f(\frac{1}{t}) \ dt \ \quad ab > 0 \nonumber \end{eqnarray}\]The integral would be either
\[\begin{eqnarray} \int_{1/b}^{0} \frac{1}{t^{2}} f(\frac{1}{t}) \ dt \end{eqnarray}\]or
\[\begin{eqnarray} \int_{0}^{1/a} \frac{1}{t^{2}} f(\frac{1}{t}) \ dt . \end{eqnarray}\](ii) Variable transformations $x(t) = 1/t$
Let $\gamma \in [0, 1)$. Consider a substitution $x(t) := t^{1/(1-\gamma)} + a$.
- $(a, b]$ to $[0, (b - a)^{1-\gamma})$,
The substitution $x(t)$ yields
\[\begin{eqnarray} \int_{a}^{b} f(x) \ dx & = & \int_{0}^{(b - a)^{1-\gamma}} f \left( t^{1/(1 - \gamma)} + a \right) \frac{ t^{\gamma/(1 - \gamma) } }{ (1 - \gamma) } \ dt \nonumber \end{eqnarray}\]Smiliary, the substitution $t(x) := (b - x)^{1-\gamma}$ yields
- $(a, b]$ to $[0, (b - a)^{1-\gamma})$,
since
\[\begin{eqnarray} x & = & b - t^{1/(1 - \gamma)} \nonumber \\ t^{\prime}(x) & := & - (1 - \gamma) (b - x)^{-\gamma} \nonumber \\ & = & - (1 - \gamma) t^{-\gamma/(1 - \gamma) } \nonumber . \end{eqnarray}\]For example, if $\gamma := 1/2$,
\[\begin{eqnarray} \int_{a}^{b} f(x) \ dx & = & \int_{0}^{(b - a)^{1/2}} f \left( t^{2} + a \right) 2 t \ dt \nonumber \\ \int_{a}^{b} f(x) \ dx & = & \int_{0}^{(b - a)^{1/2}} f \left( b - t^{2} \right) 2 t \ dt \nonumber \end{eqnarray}\](iii) Variable transformation $x(t) := -\log t$,
- $x(t) := - \log t$,
- $x^{-1}(x) := \exp(-t)$,
Then
\[\begin{eqnarray} \int_{a}^{\infty} f(x) \ dx & = & \int_{0}^{e^{-a}} f(- \log t) \frac{1}{t} \ dt . \end{eqnarray}\]From finte space to inifinite space,
\[\begin{eqnarray} \int_{a}^{\infty} f(x) \ dx & = & \\ \end{eqnarray}\] \[\begin{eqnarray} t(x) & := & \frac{1}{2} (b + a) + \frac{1}{2} (b - a) \tanh t \nonumber \\ t^{\prime}(x) & = & \frac{1}{2} (b - a) \mathrm{sech}^{2} t \end{eqnarray}\](iv) Variable transformation $x(t) := 1 / (1 + \exp(-t))$,
\[\begin{eqnarray} x(t) & := & - \log \left( \frac{ 1 }{ t } - 1 \right) \nonumber \\ x^{-1}(t) & := & \frac{ 1 }{ 1 + \exp(-t) } \nonumber \\ x^{-1}(-\infty) & := & 0, \nonumber \\ x^{-1}(\infty) & := & 1, \nonumber \\ x(t) & := & - \frac{ t }{ 1 - t } (- t^{-2}) \nonumber \\ x(t) & := & - \frac{ t }{ 1 - t } (- t^{-2}) \nonumber \\ & = & \frac{ 1 }{ (1 - t)t } \nonumber \end{eqnarray}\] \[\begin{eqnarray} \int_{a}^{b} f(x) \ dx & = & \int_{0}^{1} f \left( \right) \frac{ 1 }{ (1 - t)t } \ dt \nonumber \\ \end{eqnarray}\]Quadrature by variable transformation
Example 1
\[\begin{eqnarray} \int_{0}^{1} \log x \log (1 - x) \ dx & = & 2 - \frac{\pi^{2}}{6} . \nonumber \end{eqnarray}\]Apply Double Exponential rule.
Example2
\[\begin{eqnarray} \int_{0}^{\infty} \frac{ 1 }{ x^{1/2}(1 + x) } \ ex & = & \pi . \nonumber \end{eqnarray}\]Double exponential with $c = \pi / 2$ within $(-4, 4)$. TANH rule within $(-90, 90)$.
Example3
\[\begin{eqnarray} \int_{0}^{\infty} x^{-3/2} \sin(\frac{x}{2} e^{-x} \ dx & = & (\pi (\sqrt{5} - 2))^{1/2} . \nonumber \end{eqnarray}\]Apply $x = \exp(t - e^{-t})$ within $(-4.5, 5)$.
- (1)
Example4
\[\begin{eqnarray} \int_{0}^{\infty} x^{-2/7} e^{-x^{2}} \ ex & = & \frac{1}{2} \Gamma(\frac{5}{14}) \nonumber \end{eqnarray}\]Apply $x = \exp(t - e^{-t})$ within $(-4, 3)$.
Let’s consider the following integral.
\[I := \int_{-\infty}^{\infty} f(x(t)) x^{\prime}(t) \ dt .\]With the trapezoidal rule, we approximate the integral $I$ as
\[\begin{eqnarray} I_{h} & := & h \sum_{n=-\infty}^{\infty} f(x(t)) x^{\prime}(t) . \end{eqnarray}\]For computational reason, we
\[\begin{eqnarray} I_{h, N} & := & h \sum_{n=-N}^{N} f(x(t)) x^{\prime}(t) . \end{eqnarray}\]Discretization error
\[e_{d}(h) := \norm{ I - I_{h} } .\]Truncation/Trimming error
\[e_{t}(h, N) := \norm{ I_{h} - I_{h, N} } .\]Discretization error for TANH rule is
\[\begin{eqnarray} e_{t}(N) & = & O(e^{-2Nh}) \nonumber \end{eqnarray}\]