View on GitHub

memo

Least Common Multiple

Least Common Multiple

Definition Common Multiple

\[\mathrm{CM}(a_{1}, \ldots, a_{n}) := \{ a \in \mathbb{Z} \mid \exists (k_{1}, \ldots, k_{n}) \in \mathbb{Z}^{n} \text{ s.t. } a = a_{i} k_{i} \} .\]

We define positve common multiples

\[\mathrm{CM}_{+}(a_{1}, \ldots, a_{n}) := \mathrm{CM}(a_{1}, \ldots, a_{n}) \cap \mathbb{N} .\]

Definition LCM

\[\mathrm{lcm}(a_{1}, \ldots, a_{n}) := \min \mathrm{CM}_{+} .\]

proposition

Let $l := \mathrm{lcm}(a_{1}, \ldots, a_{n})$. If $m$ is a common multiple, $l \mid m$.

proof

$\Box$

propositoin

\[\mathrm{lcm}(1, \ldots, n) \ge 2^{n} .\]

proof

Let $1 \le m \le n$ and $l_{n} := \mathrm{lcm}(1, \ldots, m)$ By integration by parts,

\[\begin{eqnarray} I_{n, m} & := & \int_{0}^{1} x^{m - 1}(1 - x)^{n - m} \ dx \nonumber \\ & = & \left[ \frac{ x^{m}(1 - x)^{n - m} }{ m } \right]_{0}^{1} + \frac{(n - m)}{m} \int_{0}^{1} x^{m}(1 - x)^{n - m - 1} \ dx \nonumber \\ & = & \frac{(n - m)}{m} \left[ \frac{ x^{m + 1}(1 - x)^{n - m - 1} }{ m + 1 } \right]_{0}^{1} + \frac{(n - m)}{m} \frac{(n - m - 1)}{m + 1} \int_{0}^{1} x^{m + 1}(1 - x)^{n - m - 2} \ dx \nonumber \\ & = & \frac{(n - m)}{m} \frac{(n - m - 1)}{m + 1} \int_{0}^{1} x^{m + 1}(1 - x)^{n - m - 2} \ dx \nonumber \\ & = & \frac{ (n - m) (n - m - 1) \cdots 1 }{ m (m + 1) \cdots n } \nonumber \\ & = & \frac{ (n - m)! (m + 1)! }{ n! } \nonumber \\ & = & \frac{ 1 }{ m \left( \begin{array}{c} n \\ m \end{array} \right) } \label{i_n_m_integration_by_parts} . \end{eqnarray}\]

On the other hand, by binominal theorem,

\[\begin{eqnarray} I_{n, m} & = & \int_{0}^{1} x^{m - 1}(1 - x)^{n - m} \ dx \nonumber \\ & = & \int_{0}^{1} x^{m - 1} \sum_{r=0}^{n - m} \left( \begin{array}{c} n - m \\ r \end{array} \right) (-1)^{r} x^{n - m - r} \ dx \nonumber \\ & = & \int_{0}^{1} \sum_{r=0}^{n - m} \left( \begin{array}{c} n - m \\ r \end{array} \right) (-1)^{r} x^{n - r - 1} \ dx \nonumber \\ & = & \sum_{r=0}^{n - m} \left[ \left( \begin{array}{c} n - m \\ r \end{array} \right) (-1)^{r} \frac{1}{n - r} x^{n - r} \right]_{0}^{1} \nonumber \\ & = & \sum_{r=0}^{n - m} \left( \begin{array}{c} n - m \\ r \end{array} \right) (-1)^{r} \frac{1}{n - r} . \nonumber \end{eqnarray}\]

That implies $l_{n} I_{n, m} \in \mathbb{Z}$. Combining \(\eqref{i_n_m_integration_by_parts}\), we have

\[m \left( \begin{array}{c} n \\ m \end{array} \right) \mid l_{n} .\] \[n \left( \begin{array}{c} 2n \\ n \end{array} \right) \mid l_{2n}\]

and

\[(n + 1) \left( \begin{array}{c} 2n + 1\\ n + 1 \end{array} \right) = (2n + 1) \left( \begin{array}{c} 2n\\ n \end{array} \right) \mid l_{2n + 1}\]

hold.

Since by definition, \(l_{2n} \mid l_{2n+1}\), There is $k_{1}, k_{2}, k_{3} \in \mathbb{Z}$ such that

\[\begin{eqnarray} l_{2n + 1} & = & k_{1} l_{2n} \nonumber \\ & = & k_{1} k_{2} n \left( \begin{array}{c} 2n\\ n \end{array} \right) \nonumber \\ & = & k_{3} (2n + 1) \left( \begin{array}{c} 2n\\ n \end{array} \right) . \nonumber \end{eqnarray}\]

Since $k_{1}k_{2} n = k_{3} (2n + 1)$,

\[n \mid k_{3}.\]

We obtain

\[n (2n + 1) \left( \begin{array}{c} 2n \\ n \end{array} \right) \mid l_{2n+1} .\]

Now

\[\begin{eqnarray} (1 + x)^{2n} & = & \sum_{r=0}^{2n} \left( \begin{array}{c} 2n \\ r \end{array} \right) x^{2n - r} \nonumber \\ & \le & \left( \begin{array}{c} 2n \\ n \end{array} \right) \sum_{r=0}^{2n} x^{2n - r} \nonumber . \end{eqnarray}\]

Taking $x = 1$,

\[\begin{eqnarray} 2^{2n} & \le & \left( \begin{array}{c} 2n \\ n \end{array} \right) (2n + 1) \label{binominal_ineaulity_01} \end{eqnarray}\]

Since $n \ge 4$,

\[\begin{eqnarray} l_{2n + 1} & \ge & n (2n + 1) \left( \begin{array}{c} 2n \\ n \end{array} \right) \nonumber \\ & \ge & n 4^{n} \quad (\because \eqref{binominal_ineaulity_01}) \nonumber \\ & = & n 2^{2n} \nonumber \\ & \ge & 4 2^{2n} \nonumber \\ & = & 2^{2n + 2} \nonumber \\ & = & 2^{2n + 1} . \nonumber \end{eqnarray}\]

Hence for $n \ge 9$

\[l_{n} \ge 2^{n} .\]

Since $l_{7} = 420$, $l_{8} = 840$, $2^{7} = 128$, and $2^{8} = 256$,

\[l_{n} \ge 2^{n}\]

for $n \ge 7$.

$\Box$

Reference