View on GitHub

memo

AKS Primary Test

AKS Primary Test

Definition

\[o_{r}(n) := \min \{ e \mid n^{e} \equiv 1 (\mathrm{mod}\ r) \} .\] \[(X + a)^{n} \equiv X^{n} + a (\mathrm{mod}\ X^{r} - 1, n) \overset{\mathrm{def}}{\Leftrightarrow} \exists f, g \text{ s.t. } (X + a)^{n} - X^{n} + a = (X^{r} - 1)g + nf\]

Algorithm

$n > 1$.

\[r := \min \{ r^{\prime} \mid o_{r^{\prime}}(n) > (\log n)^{2} \} .\]

Lemma 2.1

$n$ is prime if and only if

\[(X + a)^{n} \equiv X^{n} + a (\mathrm{mod}\ n)\]

proof

\[\begin{eqnarray} (X + a)^{n} - (X^{n} + a) & = & \sum_{r=0}^{n} \left( \begin{array}{c} n \\ r \end{array} \right) X^{r} a^{n - r} - X^{n} - a \nonumber \\ & = & \sum_{r=1}^{n-1} \left( \begin{array}{c} n \\ r \end{array} \right) X^{r} a^{n - r} \label{lemma_02_01_01} \end{eqnarray}\]

(only if part) If $n$ is prime, for $1 \ge r \ge n$,

\[\left( \begin{array}{c} n \\ r \end{array} \right) \equiv \frac{ n! }{ (n - r)!r! } \equiv 0 (\mathrm{mod}\ n) .\]

So \(\eqref{lemma_02_01_01}\) holds.

(if part)

If $n$ is composite, there is a prime $q \in \mathbb{N}$ and integer $k \mathbb{N}$ such that $n = q^{k}d$. $q^{k}$ does not divide \({n \choose q}\). Indeed,

\[\begin{eqnarray} \left( \begin{array}{c} n \\ q \end{array} \right) & = & \frac{ n! }{ q! (n - q)! } \nonumber \\ & = & \frac{ q^{k - 1}d (n - 1) \cdots (n - q + 1) }{ (q - 1)! }. \end{eqnarray}\]

Since there is no multiple of $q$ between $(n-1)$ and $(n - q + 1)$, $q^{k}$ cannot divide the factors in the numerator. Also, $(a^{n - q}, q^{k}) = 1$. Indeed, if $(a^{n-q}, q^{k}) \neq 1$, there is a common divisor \(d_{1}\). Since $q$ is a prime, $d_{1} = q^{l}$ for some $1 \le l \le k$. Hence $q$ is a common divisor as well. However, if $q \mid a^{n - q}$, $q | a$. This contradicts to $(a, n) = 1$. Therefore, the coefficient of $X^{q}$ is not zero (mod $n$).

$\Box$

Theorem 4.1

The algorithm returns PRIME if and only if $n$ is prime.

Lemma 4.2

If $n$ is prime, the algorithm returns PRIME.

proof

If $n$ is prime, Step 1 and Step 3 do not return COMPIOSITE. At Step 5, by lemma 2.1,

Reference