Definiton. Saddle point
- \(a = (a^{1}, \ldots, a^{n}) \in \mathbb{R}^{n}\),
- \(f: \mathbb{R}^{n} \rightarrow \mathbb{R}\),
$a$ is said to be saddle point of $f$ if \(g_{x}(t) := (a + xt)\), \(h_{y}(t) := (a + yt)\)
- \(\forall x \neq 0\), \(g_{x}(t)\) local maximum.
- \(\forall x \neq 0\), \(h_{x}(t)\) local minimum.
■