View on GitHub

memo

Weak Convergence

Weak Convergence

Definition 1 Weak convergence

\(\{P_{n}\}\) is said to converge wealkly to $P$ if

\[\forall f \in C_{b}(S), \ \lim_{n \rightarrow \infty} \int_{S} f(s) \ P_{n}(ds) = \int_{S} f(s) \ P(ds) .\]

We write $P_{n} \overset{w}{\rightarrow} P$.

Proposition 1

(1)

If $P_{n} \overset{w}{\rightarrow} P$, $P_{n} \overset{w}{\rightarrow} P^{\prime}$, then $P = P^{\prime}$.

(2) Let $F$ be closed set.

\[\begin{eqnarray} f(x) & := & (1 - \rho(x, F)/\epsilon)^{+} \end{eqnarray}\]

(2-1) $f$ is bounded.

(2-2) $f$ is uniformly continuous

(2-3)

\[\begin{eqnarray} I_{F}(x) \le f(x) \le I_{F^{\epsilon}}(x) . \end{eqnarray}\]

proof

proof of (1)

\[\begin{eqnarray} \forall O \in \mathcal{O}, \ P(O) & = & \int_{S} 1_{O}(x) \ P(dx) \nonumber \\ & = & \lim_{n \rightarrow \infty} \int_{S} 1_{O}(x) \ P_{n}(dx) \nonumber \\ & = & \int_{S} 1_{O}(x) \ P^{\prime}(dx) \nonumber \\ & = & P^{\prime}(O) \nonumber \end{eqnarray}\]

proof of (2)

Since $0 \le f_{\epsilon} \le 1$, (2-1) holds.

As to (2-2),

\[\begin{eqnarray} \abs{ f_{\epsilon}(x) - f_{\epsilon}(x) } \le \end{eqnarray}\]
$\Box$

Definition 3

\(\{X_{n}\}\) is said to converge to $X$ in distribution if

\[\begin{eqnarray} & & P_{n}X_{n}^{-1} \overset{w}{\rightarrow} PX^{-1} \nonumber \\ & \Leftrightarrow & \forall f \in C_{b}(S), \ \lim_{n \rightarrow \infty} \int_{S} f(s) \ (P_{n}X_{n}^{-1})(ds) = \int_{S} f(s) \ (PX^{-1})(ds) . \end{eqnarray} .\]

We write $X_{n} \overset{d}{\rightarrow} X$.

Proposition 4

(1)

$X_{n} \overset{d}{\rightarrow} X$ if and only if

\[\forall f \in C_{b}(S), \ \lim_{n \rightarrow \infty} \int_{S_{n}} f(X_{n}(\omega)) \ P_{n}(d \omega) = \int_{S} f(X(\omega)) \ P(d \omega) .\]

proof

$\Box$

Definition 5

$A$ is said to be $P$-continuity set if

\[P(\partial A) = 0\]

where $\partial A$ is boundary of $A$. Note that $\partial A$ is closed.

Theorem 6 The Portmanteau Theorem

These five conditions are equivalent:

proof

(i) $\Rightarrow$ (ii)

(ii) $\Rightarrow$ (iii)

(iii) $\Leftrightarrow$ (iv)

(iii) $\Rightarrow$ (v)

(v) $\Rightarrow$ (i)

$\Box$

Theorem 7

If

\[X^{n} \overset{d}{\rightarrow} X,\]

then for all $\tilde{t} := (t_{1}, \ldots, t_{d}) \in \mathcal{T}$,

\[(X_{t_{1}}^{n}, \ldots, X_{t_{d}}^{n}) \overset{d}{\rightarrow} (X_{t_{1}}, \ldots, X_{t_{d}}) .\]

proof

Let us define $\pi_{\tilde{t}}: C[0, \infty) \rightarrow \mathbb{R}^{d}$ as

\[\pi_{\tilde{t}}(X(\omega)) := X_{\tilde{t}}(\omega) = (X_{t_{1}}(\omega), \ldots, X_{t_{d}}(\omega)) .\]

Note that $\pi_{\tilde{t}}$ is $\mathcal{B}(C[0, \infty))/\mathcal{B}(\mathbb{R}^{d})$ measurable. Let $f \in C_{b}(\mathbb{R}^{d})$ be fixed. $f \circ \pi_{\tilde{t}}$ is bounded function from $C[0, \infty)$ to $\mathbb{R}^{d}$.

\[\begin{eqnarray} \lim_{n \rightarrow \infty} \int_{\Omega^{n}} f(X_{\tilde{t}}^{n}(\omega)) \ P_{n}(d \omega) & = & \lim_{n \rightarrow \infty} \int_{\Omega^{n}} f(\pi_{\tilde{t}}(X^{n}(\omega))) \ P_{n}(d \omega) \nonumber \\ & = & \lim_{n \rightarrow \infty} \int_{\Omega^{n}} (f \circ \pi_{\tilde{t}})(X^{n}(\omega))) \ P_{n}(d \omega) \nonumber \\ & = & \int_{\Omega} (f \circ \pi_{\tilde{t}})(X(\omega))) \ P(d \omega) \nonumber \\ & = & \int_{\Omega} f(X_{\tilde{t}}(\omega)) \ P(d \omega) \end{eqnarray}\]
$\Box$

Theorem

\[\tilde{t} \in \mathcal{T}, \ (X_{d_{1}}^{n}, \ldots, X_{t_{d}}^{n}) \overset{D}{\rightarrow} (X_{d_{1}}, \ldots, X_{t_{d}}) .\]

If

\[X^{n} \overset{d}{\rightarrow} X,\]

then for all $\tilde{t} := (t_{1}, \ldots, t_{d}) \in \mathcal{T}$,

\[(X_{t_{1}}^{n}, \ldots, X_{t_{d}}^{n}) \overset{d}{\rightarrow} (X_{t_{1}}, \ldots, X_{t_{d}}) .\]

proof

$\Box$

Theorem

\[\forall \tilde{t} \in \mathcal{T}, \ X_{\tilde{t}}^{n} \rightarrow X_{\tilde{t}} .\]

Let

\[\begin{eqnarray} P^{n} & := & P \circ (X^{n})^{-1}: \mathcal{B}(C[0, \infty)) \rightarrow [0, 1] \nonumber \\ W_{t}(\omega) & := & \omega(t) \nonumber \end{eqnarray} .\]

Then there exists measure $P$ on \((C[0, \infty), \mathcal{B}(C[0, \infty)))\) such that

\[\tilde{t} \in \mathcal{T}, \ X_{\tilde{t}}^{n} \rightarrow W_{\tilde{t}} .\]

proof

By definition of tightness, every subsequence of tight sequence is also tight. Let $\bar{P} := P \circ X^{-1}$. By Prohorov theorme, \(\{P_{n}\}\) contains a weakly convergent subsequence. every subsequence of \(\{P^{n}\}\) converges weakly to a probability measure $\bar{P}$.

$\Box$

Reference