View on GitHub

memo

Convergence in Distribution

Convergence in Distribution

Definition

\(\{X_{n}\}_{n \in \mathbb{N}}\) is said to converges to $X$ in distribution and write $X_{n} \overset{d}{\rightarrow} X$ if \(\{P_{n}X_{n}^{-1}\}\) converges wealkly to $PX^{-1}$. That is, for all bounded continuous real-valued function $f$,

\[\lim_{n \rightarrow \infty} \mathrm{E}_{n} \left[ f(X_{n}) \right] = \mathrm{E} \left[ f(X) \right] .\]

Reference