Mean Value Theorem
Theorem multiple variables
- $G \subseteq \mathbb{R}^{n}$,
- convex
- open
- $f:G \rightarrow \mathbb{R}$,
- differentiable
- $x, y \in G$,
proof
Let be define
\[g(t) := f(x + t(y - x)) .\]Since $g$ is differentiable, by mean value theorem for one dimentional function,
\[\exists c \in [0, 1] \text{ s.t. } g(1) - g(0) = g^{\prime}(c) .\]Hence
\[f(y) - f(x) = \nabla f(x + c(y - x))^{\mathrm{T}} (y - x) .\]$\Box$