Matrix Norm
Definition. Frobenius Norm
- \(A \in \mathbb{C}^{m \times n}\),
■
Proposition 2.
- \(A = (a_{1} \cdot a_{n}) \in \mathbb{C}^{m \times n}\),
- \(a_{i} \in \mathbb{C}^{m}\) is column vectors of $A$.
proof.
We show first equality as follows:
\[\begin{eqnarray} \mathrm{tr}(A^{\mathrm{T}}A) & = & \left( \begin{array}{c} a_{1}^{\mathrm{T}} \\ \vdots \\ a_{n}^{\mathrm{T}} \end{array} \right) (a_{1} \cdot a_{n}) \\ & = & \mathrm{tr} \left( (a_{j_{1}}^{\mathrm{T}}a_{j_{2}})_{j_{1},j_{2}=1,\ldots, n} \right) \nonumber \\ & = & \sum_{j=1}^{n} (a_{j}^{\mathrm{T}}a_{j}) . \end{eqnarray}\] \[\begin{eqnarray} \mathrm{tr}(AA^{\mathrm{T}}) & = & \mathrm{tr}((A^{\mathrm{T}}A)^{\mathrm{T}}) \nonumber \\ & = & \mathrm{tr} \left( \left( (a_{j_{1}}^{\mathrm{T}}a_{j_{2}})_{j_{1},j_{2}=1,\ldots, n} \right)^{\mathrm{T}} \right) \nonumber \\ & = & \sum_{j=1}^{n} (a_{j}^{\mathrm{T}}a_{j}) \nonumber . \end{eqnarray}\]■
Proposition3.
- $A \in \mathbb{R}^{m \times n}$,
- $U \in \mathbb{R}^{m \times m}$
- unitary matrix
- $V \in \mathbb{R}^{n \times n}$
- unitary matrix
Then
\[\|UAV\|_{F} = \|A\|_{F} .\]proof.
\[\begin{eqnarray} \|UA\|_{F}^{2} & = & \mathrm{tr} ( (UA)^{\mathrm{T}}UA ) \nonumber \\ & = & \mathrm{tr} ( A^{\mathrm{T}}A ) \nonumber \end{eqnarray}\]Moreover,
\[\begin{eqnarray} \|AV\|_{F}^{2} & = & \mathrm{tr} ( AV(AV)^{\mathrm{T}} ) \nonumber \\ & = & \mathrm{tr} ( AA^{\mathrm{T}} ) . \nonumber \end{eqnarray}\]$\Box$
Propositon 4.
- \(A \in \mathbb{C}^{m \times n}\),
- \(U \in \mathbb{C}^{m \times m}\),
- unitary matrix
- \(\Sigma \in \mathbb{C}^{m \times n}\),
- \(\Sigma = \mathrm{diag}(\sigma_{1}, \ldots, \sigma_{r}, 0, \ldots, 0)\),
- singular value of $A$
- \(V \in \mathbb{C}^{n \times n}\),
- unitary matrix
Suppose SVD $A = U\Sigma V$ holds. Then
\[\|A\|_{F}^{2} = \sum_{i=1}^{r} (\sigma_{i})^{2}\]proof.
By the above proposition,
\[\begin{eqnarray} \|A\|_{F}^{2} & = & \|U\Sigma V\|_{F}^{2} \nonumber \\ & = & \|\Sigma \|_{F}^{2} \nonumber \\ & = & \mathrm{tr}(\Sigma \Sigma) \nonumber \\ & = & \mathrm{tr}(\Sigma^{2}) \nonumber \end{eqnarray}\]$\Box$
Proposition5
- $S$
- symmetric (i.e. $S = S^{\mathrm{T}}$),
- $K$
- skew symmetric (i.e. $K = -K^{\mathrm{T}}$),
Then
\[\|S + K\|_{F}^{2} = \|S\|_{F}^{2} + \|K\|_{F}^{2}\]proof.
\[\begin{eqnarray} \|S + T\|_{F}^{2} & = & \mathrm{tr}((S + T)^{\mathrm{T}}(S + T)) \mathrm{tr} \left( (S^{\mathrm{T}} + T^{\mathrm{T}}) (S + T) \right) \nonumber \\ & = & \mathrm{tr} \left( S^{\mathrm{T}}S + T^{\mathrm{T}}S + S^{\mathrm{T}}T + T^{\mathrm{T}}S \right) \nonumber \\ & = & \mathrm{tr} \left( S^{\mathrm{T}}S + (-TS) + (TS)^{\mathrm{T}} + T^{\mathrm{T}}T \right) \nonumber \\ & = & \mathrm{tr} \left( S^{\mathrm{T}}S \right) + \mathrm{tr} \left( -TS \right) + \mathrm{tr} \left( (TS)^{\mathrm{T}} \right) + \mathrm{tr} \left( T^{\mathrm{T}}T \right) \nonumber \\ & = & \|S\|_{F}^{2} + \|T\|_{F}^{2} \nonumber \end{eqnarray}\]$\Box$