Vandermonde Matrix
Definition 1
- $V \mathbb{R}^{m \times n}$
- \(\alpha := (\alpha^{1}, \ldots, \alpha^{m})^{\mathrm{T}} \in \mathbb{R}^{m}\),
$V$ is called a Vandermonde matrix if
\[i \in [1:m], \ j \in [1:n], \ V_{j}^{i} = (\alpha^{i})^{j-1} .\]In other words, every row is geometric progression of the element of vector $\alpha$.
■