Similar Matrix
Definition
- $A$
- $n \times n$ matrix
- $B$
- $n \times n$ matrix
$B$ is said to be similar to an $n \times n$ matrix $A$ if there exists an $n \times n$ nonsingular matrix $C$ such that
\[B = C^{-1}AC\]■
Theorem1
- $A$
- $n \times n$ matrix
- $C$
- $n \times n$ nonsingular matrix
Then
- (1) \(\mathrm{rank}(C^{-1}AC) = \mathrm{rank}(A)\),
- (2) \(\mathrm{det}(C^{-1}AC) = \mathrm{det}(A)\),
- (3) \(\mathrm{tr}(C^{-1}AC) = \mathrm{tr}(A)\),
- (4) \(C^{\mathrm{T}}AC\) has same characteristic polynomial,
- (5)
- (6)
proof.
From Theorem 12.3.1 in Harville, David A. Matrix algebra from a statistician’s perspective. Vol. 1. New York: Springer, 1997.
$\Box$
Reference
- Harville, David A. Matrix algebra from a statistician’s perspective. Vol. 1. New York: Springer, 1997.