View on GitHub

memo

Monge

Monge

Definition Monge

$A$ is said to be Monge if

\[\forall i, j \in \mathbb{N}, \ i \in [1, m], \ j \in [1, n], \ a_{i}^{j} + a_{i+1}^{j+1} \ge a_{i}^{j+1} + a_{i+1}^{j} .\]

Definition Monotone

$\forall i = 1, \ldots, m - 1, j = 1, \ldots, n - 1$, every $2 \times 2$ submatrix

\[\left( \begin{array}{cc} a_{i}^{j} & a_{i}^{j+1} \\ a_{i+1}^{j} & a_{i+1}^{j+1} \end{array} \right)\]

does not hold both inequalities simultaneously

\[a < b, \ c \ge d.\]

Proposition 1

If a matrix is Monge, a matrix is monotone.

proof

We give a proof by induction. Let us start with $A$ is $2 \times 2$ matrix. If $a_{1}^{1} < a_{1}^{2}$, by Monge property,

\[a_{1}^{1} + a_{2}^{2} \ge a_{2}^{1} + a_{1}^{2}\]

implies $a_{2}^{2} \ge a_{2}^{1}$.

Now Let us assume that the statement hold up to $n - 1$ and $m - 1$. We prove the statement for $m \times n$ matrix. We just need to prove that every submatrix

\[\left( \begin{array}{cc} a_{m-1}^{j} & a_{m-1}^{j+1} \\ a_{m}^{j} & a_{m}^{j+1} \end{array} \right) \quad (\forall j = 1, \ldots, n-1)\]

and

\[\left( \begin{array}{cc} a_{i}^{n-1} & a_{i}^{n} \\ a_{i+1}^{n} & a_{i+1}^{n} \end{array} \right) \quad (\forall i = 1, \ldots, m-1)\]

is monotone. Obviously, Monge property holds for the submatrixes. Thus, the submatrixes are monotone.

Reference