Monge
Definition Monge
- $A = (a_{r}^{c})$,
- $m \times n$ matrix
$A$ is said to be Monge if
\[\forall i, j \in \mathbb{N}, \ i \in [1, m], \ j \in [1, n], \ a_{i}^{j} + a_{i+1}^{j+1} \ge a_{i}^{j+1} + a_{i+1}^{j} .\]■
Definition Monotone
- $A = (a_{i}^{j})$,
$\forall i = 1, \ldots, m - 1, j = 1, \ldots, n - 1$, every $2 \times 2$ submatrix
\[\left( \begin{array}{cc} a_{i}^{j} & a_{i}^{j+1} \\ a_{i+1}^{j} & a_{i+1}^{j+1} \end{array} \right)\]does not hold both inequalities simultaneously
\[a < b, \ c \ge d.\]■
Proposition 1
- $A = (a_{i}^{h})$
If a matrix is Monge, a matrix is monotone.
proof
We give a proof by induction. Let us start with $A$ is $2 \times 2$ matrix. If $a_{1}^{1} < a_{1}^{2}$, by Monge property,
\[a_{1}^{1} + a_{2}^{2} \ge a_{2}^{1} + a_{1}^{2}\]implies $a_{2}^{2} \ge a_{2}^{1}$.
Now Let us assume that the statement hold up to $n - 1$ and $m - 1$. We prove the statement for $m \times n$ matrix. We just need to prove that every submatrix
\[\left( \begin{array}{cc} a_{m-1}^{j} & a_{m-1}^{j+1} \\ a_{m}^{j} & a_{m}^{j+1} \end{array} \right) \quad (\forall j = 1, \ldots, n-1)\]and
\[\left( \begin{array}{cc} a_{i}^{n-1} & a_{i}^{n} \\ a_{i+1}^{n} & a_{i+1}^{n} \end{array} \right) \quad (\forall i = 1, \ldots, m-1)\]is monotone. Obviously, Monge property holds for the submatrixes. Thus, the submatrixes are monotone.
■
Reference
- https://home.cse.ust.hk/~golin/COMP572/Notes/SMAWK.pdf