View on GitHub

memo

Matrix Operation

Matrix Operation

Trace Norm

\[\begin{eqnarray} A \bullet B & := & \mathrm{tr} \left( AB^{\mathrm{T}} \right) \nonumber \\ & := & \mathrm{tr} \left( BA^{\mathrm{T}} \right) \nonumber \\ & = & \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i}^{j} b_{i}^{j} \nonumber \end{eqnarray}\]

We denote $i$-th leargest eignen value by $\lambda_{i}(A)$.

Proposition 1

(1)

\[\mathrm{tr} \left( A \right) = \sum_{i=1}^{n} \lambda_{i}(A)\]

(2)

\[x^{\mathrm{T}} A x = A \bullet (x x^{\mathrm{T}}) = \mathrm{tr} \left( A (x x^{\mathrm{T}}) \right)\]

(3)

\[\begin{eqnarray} \mathrm{tr} \left( A + B \right) & = & \mathrm{tr}(A) + \mathrm{tr}(B) \nonumber \end{eqnarray}\]

(4)

\[\begin{eqnarray} c \in \mathbb{R}, \ \mathrm{tr} \left( c A \right) & = & \mathrm{tr}(cA) \nonumber \end{eqnarray}\]

proof

(1)

TODO

(2)

\[\begin{eqnarray} x^{\mathrm{T}} A x & = & \sum_{i=1}^{n} x^{i} a_{i}^{j} x_{j} \nonumber \\ \mathrm{tr} \left( A x x^{\mathrm{T}} \right) & = & \mathrm{tr} \left( (a_{j}^{i})_{i,j} (x_{j}x^{i})_{i,j} \right) \nonumber \\ & = & \mathrm{tr} \left( ( \sum_{k=1}^{n} a_{k}^{i} x_{j} x^{k} )_{i,j} \right) \nonumber \\ & = & \sum_{l=1}^{n} \sum_{k=1}^{n} a_{k}^{l} x_{l} x^{k} \nonumber \end{eqnarray}\]
$\Box$

Reference