View on GitHub

memo

Gershgorin Circle Theorem

Gershgorin Circle Theorem

Thorem

\[R_{i} := \sum_{j\neq i} |a_{j}^{i}| .\]

For all $i$,

\[\exists j \in \{1, \ldots, n\}, \text{ s.t. } \lambda_{i} \in D(a_{j}^{j}, R_{j})\]

proof

$\Box$

Proposition

proof

(1)

\[\begin{eqnarray} | \lambda | - | a_{i} | & \le & | \lambda - a_{i} | \nonumber \\ & \le & R_{i} \nonumber \end{eqnarray}\]

Thus

\[\begin{eqnarray} | \lambda | & \le & \sum_{i=1}^{n} |a_{i}| \nonumber \end{eqnarray}\]
$\Box$

Reference