Gershgorin Circle Theorem
Thorem
- $A ;= (a_{j}^{i}) \in \mathbb{C}^{n \times n}$,
- matrix
- $D(a_{j}^{i}, R_{i}) \subseteq \mathbb{C}$,
- circle with radius $R_{i}$ at
- $\lambda_{i} \in \mathbb{C}$,
- the $i$-th largest eigenvalue of $A$,
For all $i$,
\[\exists j \in \{1, \ldots, n\}, \text{ s.t. } \lambda_{i} \in D(a_{j}^{j}, R_{j})\]proof
$\Box$
Proposition
proof
(1)
\[\begin{eqnarray} | \lambda | - | a_{i} | & \le & | \lambda - a_{i} | \nonumber \\ & \le & R_{i} \nonumber \end{eqnarray}\]Thus
\[\begin{eqnarray} | \lambda | & \le & \sum_{i=1}^{n} |a_{i}| \nonumber \end{eqnarray}\]$\Box$