Linear code
Definition linear code
- $k, n \in \mathbb{N}$,
- $k \le n$,
- $\mathbb{F}_{q}^{n}$,
- $C \subseteq \mathbb{F}_{q}^{n}$,
$C$ is said to be a linear code of length $n$ and dimension $k$ if $C$ is a $k$ dimentional linear subspace.
A code is an element of $C$. The size of the code is $q^{k}$.
■
Definition Generator
- $G$,
- $k \times n$ matrix
Generator matrix $G$ is a matrix where $C := {xG \mid x \in F_{q}^{n}}$. If $G = [I_{k} \mid P]$ where $I_{k}$ is $k\times k$ identity matrx and $P$ is $k \times (n- k)$ matrix, $G$ is in standard form.
■
Definition Check matrix
- $H$,
- $(n - k) \times n$ matrix
$H$ is said to be a check matrix if
\[C = \{ x \in F_{q}^{n} \mid Hx = 0 \} .\]That is, The kernel of $H$ is $C$. If $G = [I_{k} \mid P]$ where $I_{k}$ is $k\times k$ identity matrx and $P$ is $k \times (n- k)$ matrix, $G$ is in standard form.
■
Remark
If $G = [I_{k} \mid P]$ is in a standard form, $H = [-P^{T} \mid I_{n-1}]$.
■
Definition Dual code
- $C$,
- linear code
- $G$,
- $n \times k$ matrix
- $H$,
- check matrix
- $(n - k) \times n$ matrix
The dual code of $C$ $C^{\bot}$ is a linear subspace genrated by $H$. That is
\[C^{\bot} = \{ c \in F_{q}^{n} \mid c^{\prime} \in C, \ \langle c, c^{\prime} \rangle = 0 \} = \{ (H x)^{T} \in F_{2}^{n} \mid x \in F_{2}^{n - k} \} .\]■
Reference
- https://en.wikipedia.org/wiki/Linear_code