View on GitHub

memo

Kolmogorov Inequality

Kolmogorov Inequality

Theorem Kolmogorov Inequality

Then for $\lambda > 0$<

\[\begin{eqnarray} P \left( \max_{k \in [1:n]} \abs{S_{k}} \ge \right) & \le & \frac{1}{\lambda^{2}} \mathrm{Var} \left[ S_{n} \right] \nonumber \\ & = & \frac{1}{\lambda^{2}} \sum_{k=1}^{n} \mathrm{E} \left[ X_{k}^{2} \right] \end{eqnarray}\]

where

\[\begin{eqnarray} S_{k} & := & \sum_{i=1}^{k} X_{i} \nonumber \end{eqnarray}\]

proof

\[\begin{eqnarray} S_{i} - S_{i-1} & = & X_{i} \end{eqnarray}\] \[\begin{eqnarray} \mathrm{E} \left[ - 2(S_{n} - S_{k})S_{k} \right] & = & \sum_{i=1}^{n} 2 \mathrm{E} \left[ \sum_{i=k+1}^{n} X_{i} \right] \mathrm{E} \left[ S_{i-1} \right] \nonumber \\ & = & \mathrm{E} \left[ S_{n}^{2} - S_{i-1}^{2} \right] - \mathrm{E} \left[ S_{0}^{2} \right] \nonumber \end{eqnarray}\] \[\begin{eqnarray} A_{k} & := & \{ S_{k} \ge \lambda, \ \forall j < k, \ S_{j} < \alpha \} \nonumber \end{eqnarray}\]

Note that

\[\begin{eqnarray} \bigcup_{k \in [1:n]} A_{k} = \left\{ \max_{k \in [1:n]} \abs{S_{k}} \ge \alpha \right\} . \end{eqnarray}\] \[\begin{eqnarray} \mathrm{E} \left[ S_{n}^{2} \right] & = & \int_{\sum_{k=1}^{n} A_{k}} S_{n}^{2}(\omega) \ P(d\omega) \nonumber \\ & = & \sum_{k=1}^{n} \int_{A_{k}} (S_{n}(\omega) - S_{k}(\omega))^{2} - S_{k}^{2}(\omega) + 2 S_{k}(\omega) S_{n}(\omega) \ P(d\omega) \nonumber \\ & = & \sum_{k=1}^{n} \int_{A_{k}} (S_{n}(\omega) - S_{k}(\omega))^{2} + S_{k}^{2}(\omega) - 2 S_{k}^{2}(\omega) + 2 S_{k}(\omega) S_{n}(\omega) \ P(d\omega) \nonumber \\ & = & \sum_{k=1}^{n} \int_{A_{k}} (S_{n}(\omega) - S_{k}(\omega))^{2} + S_{k}^{2}(\omega) + 2 S_{k}(\omega) \left( S_{n}(\omega) - S_{k}^{2}(\omega) \right) \ P(d\omega) \nonumber \\ & \ge & \sum_{k=1}^{n} \int_{A_{k}} S_{k}^{2}(\omega) + 2 S_{k}(\omega) (S_{n}(\omega) - S_{k}(\omega)) \ P(d\omega) \nonumber \\ & = & \sum_{k=1}^{n} \int_{A_{k}} S_{k}^{2}(\omega) \ P(d\omega) \nonumber \\ & \ge & \sum_{k=1}^{n} \alpha^{2} P(A_{k}) \nonumber \\ & = & \alpha^{2} P(\max_{k \in [1:n]}\abs{S_{k}} \ge \alpha) \nonumber \end{eqnarray}\]
$\Box$

Reference