Irreducible Polynomial over finite field
Definition
- $GF(m)$
- Galois field / finite field which has $m$ elements
$GF(4)$
\[\begin{array}{c|cccc} + & 0 & 1 & 2 & 3 \\ \hline 0 & 0 & 1 & 2 & 3 \\ 1 & 1 & 0 & 3 & 2 \\ 2 & 2 & 3 & 0 & 1 \\ 3 & 3 & 2 & 1 & 0 \end{array}\] \[\begin{array}{c|cccc} × & 0 & 1 & 2 & 3 \\ \hline 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 & 3 \\ 2 & 0 & 2 & 3 & 1 \\ 3 & 0 & 3 & 1 & 2 \end{array}\]Examples
over $GF(4)$
Irreducible polynomials of \(GF(4)[X]\),
- \(X\),
- \(X + 1\),
- \(X + 2\),
- \(X + 3\),
- \(X^{2} + X + 2\),
- \(X^{2} + X + 3\),
- \(X^{2} + 2X + 1\),
- \(X^{2} + 2X + 2\),
- \(X^{2} + 3X + 1\),
- \(X^{2} + 3X + 1\),
- \(X^{2} + 3X + 3\),
- \(X^{3} + 2\),
- \(X^{3} + 3\),
- \(X^{3} + X + 1\),
- \(X^{3} + 2X + 1\),
- \(X^{3} + 3X + 1\),
- \(X^{3} + X^{2} + 1\),
- \(X^{3} + X^{2} + X + 2\),
Reducible polynomial
- \(X^{2} + X + 1 = (X + 3)(X + 2) = X^{2} + (3 + 2)X + 3 \times 2\),
- \(X^{2} + 2X + 3 = (X + 1)(X + 3) = X^{2} + (1 + 3)X + 1 \times 3\),