Homotopy
Definition homotopy
- $X$,
- top sp
- $I := [0, 1]$,
- $f: I \rightarrow X$,
- continuous map
- $g: I \rightarrow X$,
- continuous map
- $H: I \times I \rightarrow X$,
- continuous map
$H$ is sait to be homotopy between $f$ and $g$.
\[H(0, t) := f(t), \ H(1, t) := g(t).\]Definition homotop
- $X$,
- top sp
- $I := [0, 1]$,
- $f: I \rightarrow X$,
- continuous map
- $g: I \rightarrow X$,
- continuous map
$f$ and $g$ is said to be homotop if there exists homotopy $H$ between $f$ and $h$. We write $f \cong g$.
Remark
Homotop is a equivalence relation. Let $f \cong \cong h$ and $H_{1}$ and $H_{2}$ be homotopy of $f \cong g$ and $g \cong h$ respecitvely. We’ll show that $f \cong h$. Let
\[H(s, t) := \begin{cases} H(2s, t) & (0 \le s \le 1/2) \\ H(2s - 1, t) & (1/2 \le s \le 1) \end{cases} .\]$H$ is a homotopy between $f$ and $h$. Reflective and symmetric properties are obvious.
Definition
- $f:I \rightarrow X$,
- path
For any $x, y \in X$, a set of path from $x$ to $y$ $P(X; x, y)$ is defind
\[P(X; x, y) := \{ f: I \rightarrow X: \mathrm{continueous map} \mid f(0) = x, \ f(1) = y \} .\]Definition fundamental group
- $X$,
- top sp.
- $x \in X$,
Let
\[\pi(x, X) := P(X; x, x) / \cong .\]We define multiplication is defined
\[[f] [g] := [fg] .\]The inverse is $[f]^{-1} := [f^{-1}]$. And unit is $[0_{x}]$.
$pi(x, X)$ is called a fundamental group.
Remark
$pi(x, X)$ is a group.
Indeed, $[f][g]$ is well-defined. Let $f^{\prime}$ and $g^{\prime}$ be another element in $[f]$ and $[g]$ respecitvely. We’ll show that $[fg] = [f^{\prime}g^{\prime}]$. There eixst homotopies
\[\begin{eqnarray} H_{f}(0, t) & = & f(t) \nonumber \\ H_{f}(1, t) & = & f^{\prime}(t) H_{g}(0, t) & = & g(t) \nonumber \\ H_{g}(1, t) & = & g^{\prime}(t) \nonumber . \end{eqnarray}\]Let $H$ be
\[H(s, t) := \begin{cases} H(s, 2t) & (0 \le t \le 1/2) \\ H(s, 2t - 1) & (1/2 \le t \le 1) \end{cases} .\]$H$ is homotopy betwee $f * g$ and $f^{\prime} * g^{\prime}$.
\([0_{x}]\) is unit. We’ll show that $[0_{x}][f] = [f]$. Let
\[H(s, t) := \begin{cases} x & (0 \le t \le (-s + 1) / 2) \\ f((2t - s - 1) / (s + 1)) & ( (-s + 1) / 2 \le t \le 1) \end{cases} .\]Particularly,
\[\begin{eqnarray} H(0, t) & = & \begin{cases} x & (0 \le t \le 1 / 2) \\ f(2t - 1) & (1/ 2 \le t \le 1) \end{cases} \nonumber \\ H(1, t) & = & f(t) \ (0 \le t \le 1) \end{eqnarray}\]$H$ is homotopy between $0_{x} * f$ and $f$.
Lastly, we’ll show that $[f] [f^{-1}] = [0_{x}]$. Let
\[H(s, t) := \begin{cases} f(2t) & (0 \le t \le s/2) \\ f(s) & (s/2 \le t \le 1 - t/2) \\ f(2 - 2s) & (1 - s/2 \le t \le 1) \end{cases}\] \[\begin{eqnarray} H(0, t) & = & \begin{cases} f(2t) & (0 \le t \le 0) \\ f(0) & (0 \le t \le 1) \end{cases} \nonumber \\ H(0, t) & = & \begin{cases} f(2t) & (0 \le t \le 0) \\ f(0) & (0 \le t \le 1) \end{cases} \end{eqnarray}\]Reference
- http://www.math.tsukuba.ac.jp/~tasaki/lecture/ln2019/diffgeoI2019-dist.pdf