Group
Proposition
(1)
\[(aga^{-1})^{-1} = ag^{-1}a^{-1} .\]proof
$\Box$
Definition
- $G$,
- group
- $S \subseteq G$,
- subgroup
■
Definitoin
- $G$,
- gorup
- $N \subseteq G$,
- subgroup
$N$ is said to be a normal group if
\[\forall n \in N, g \in G, \quad gng^{-1} \in N.\]■
Proposition
- $G$,
- group
- $N \subseteq G$
- normal subgroup
- $a \in G$,
- $n \in N$,
(1) $a^{-1}na \in N$.
(2) $aN = Na$
proof
(1)
By definition, $an^{-1}a^{-1} \in N$. $N$ is group so the inverse is contained in $N$. That is,
\[(an^{-1}a^{-1})^{-1} = a^{-1}na \in N .\](2)
\[an = ana^{-1}a\]Here $ana^{-1} \in N$. Hence $an \in Na$. Similary,
\[na = aa^{-1}Na \in aN .\]$\Box$
Definition commutator
- $G$,
- group
$[g, h]$ is called commutator of $g, h$.
\[[G, G] := \{ [g_{1}, h_{1}] \cdots [g_{n}, h_{n}] \mid n \in \mathbb{N}, \ g_{i}, h_{i} \in G \} .\]$[G, G]$ is called the commutator group of $G$.
■
Propositon
- $G$,
- group
- $g, h \in G$,
- $a \in G$,
(1) $a[g, h]a^{-1} = [aga^{-1}, aha^{-1}]$
(2) $[G, G]$ is the smallest normal subgroup
proof
(1)
\[\begin{eqnarray} [aga^{-1}, aha^{-1}] & = & (aga^{-1})^{-1}(aha^{-1})^{-1}aga^{-1}aha^{-1} \nonumber \\ & = & ag^{-1}a^{-1}ah^{-1}a^{-1} aga^{-1}aha^{-1} \nonumber \\ & = & ag^{-1}h^{-1}gha^{-1} \nonumber \\ & = & a[g, h]a^{-1} \nonumber \end{eqnarray}\]$\Box$