Cayley’s theorem
- $G$,
- group
- $\mathrm{Sym}(G)$,
- symetric group
Obviously, $l_{g} \in \mathrm{Sym}(G)$.
\[K: G \rightarrow \mathrm{Sym}(G), \quad K(g) := l_{g} .\]Then for each $G$, there is a subgroup $A \subseteq \mathrm{Sym}(G)$ and ismorhism $f: G \rightarrow A$.
proof
TBA
$\Box$
- $\mathrm{Grp}$,
- group category
- $K: \mathrm{Grp} \rightarrow \mathrm{Set}$,
- functor