Network flow
- $(V(G), E(G))$,
- digraph
- $u: E(G) \rightarrow \mathbb{R}_{\ge 0}$,
- edge capacities
- $s \in V(G)$,
- the source
- $t \in V(G)$,
- the sink
- $(G, u, s, t)$,
- network
Definition 8.1
- $(G, u, s, t)$,
- network
- $f: E(G) \rightarrow \mathbb{R}_{\ge 0}$
$f$ is said to be flow if
\[\forall e \in E(G), \ f(e) \le u(e) .\]For $v \in V(G)$, the excess of $f$ at $v$ is defined as
\[\mathrm{ex}_{f}(v) := \sum_{e \in \delta^{-}} f(e) - \sum_{e \in \delta^{+}} f(e) .\]For $v \in V(G)$, a flow $f$ is said to satisfy the flow conservation rule at vertex $v$ if
\[\mathrm{ex}_{f}(v) = 0 .\]A flow $f$ is said to be circulation if for every vertex $f$ satisfies the flow conservation rule.
A flow $f$ is said to be $s$-$t$-flow if
\[\begin{eqnarray} & & \mathrm{ex}_{f}(s) \le 0, \nonumber \\ & & v \in V(G) \setminus \{s, t\}, \ \mathrm{ex}_{f}(v) = 0, \nonumber \end{eqnarray}\]The value of $s$-$t$-flow is defined as
\[\mathrm{value}(f) := -\mathrm{ex}_{f}(s) .\]Definition Maximum flow problem
\[\begin{align} \max & & & \sum_{e \in \delta^{+}(s)} x_{e} - \sum_{e \in \delta^{-}(s)} x_{e} \nonumber \\ \mathrm{subject\ to} & & & \sum_{e \in \delta^{+}(v)} x_{e} = \sum_{e \in \delta^{-}(v)} x_{e} & (v \in V(G) \setminus \{s, t\}) \nonumber \\ & & & x_{e} \le u(e) & (e \in E(G)) \nonumber \\ & & & x_{e} \ge 0 & (e \in E(G)) \nonumber \end{align}\]Definition 8.4
- $G$,
- digraph
- $e := (u, w) \in E(G)$,
- $u: E(G) \rightarrow \mathbb{R}_{\ge 0}$,
- edge capacities
- $f: E(G) \rightarrow \mathbb{R}_{\ge 0}$,
- flow
Note that if $e := (u, w), e^{\prime}:= (w, u) \in E(G)$, then $\overleftarrow{e}, \overleftarrow{e^{\prime}} \in E(\overleftrightarrow{G})$ are parallel edges.
Resicual capacities $u_{f}: E(\overleftrightarrow{G}) \rightarrow \mathbb{R}_{\ge 0}$ is defined as
\[u_{f}(e) := \begin{cases} u(e) - f(e) & (e \in E(G)) \\ f(e) & \text{otherwise} \end{cases} .\]The residual graph $G_{f}$ is defined as
\[G_{f} := ( V(G), \{e \in E(\overleftrightarrow{G}) \mid u_{f}(e) > 0\} ) .\]- $P$,
- a path or circle in $G_{f}$,
- $\gamma \in \mathbb{R}$,
- $f^{\prime}: E(\overleftrightarrow{G}) \rightarrow \mathbb{R}$
$f^{\prime}$ is said to argment $f$ along $P$ by $\gamma$ if
\[e \in E(P), \ f^{\prime}(e) := \begin{cases} f(e) + \gamma, & (e \in E(G)) \\ f(e) - \gamma & (e = \overleftarrow{v} \text{ for some } v \in E(G)) \end{cases} .\]- $(G, u, s, t)$,
- a network
- $f$,
- $s$-$t$-flow
$s$-$t$-path in the residual graph $G_{f}$ is called $f$-augmenting path.