View on GitHub

memo

Network flow

Network flow

Definition 8.1

$f$ is said to be flow if

\[\forall e \in E(G), \ f(e) \le u(e) .\]

For $v \in V(G)$, the excess of $f$ at $v$ is defined as

\[\mathrm{ex}_{f}(v) := \sum_{e \in \delta^{-}} f(e) - \sum_{e \in \delta^{+}} f(e) .\]

For $v \in V(G)$, a flow $f$ is said to satisfy the flow conservation rule at vertex $v$ if

\[\mathrm{ex}_{f}(v) = 0 .\]

A flow $f$ is said to be circulation if for every vertex $f$ satisfies the flow conservation rule.

A flow $f$ is said to be $s$-$t$-flow if

\[\begin{eqnarray} & & \mathrm{ex}_{f}(s) \le 0, \nonumber \\ & & v \in V(G) \setminus \{s, t\}, \ \mathrm{ex}_{f}(v) = 0, \nonumber \end{eqnarray}\]

The value of $s$-$t$-flow is defined as

\[\mathrm{value}(f) := -\mathrm{ex}_{f}(s) .\]

Definition Maximum flow problem

\[\begin{align} \max & & & \sum_{e \in \delta^{+}(s)} x_{e} - \sum_{e \in \delta^{-}(s)} x_{e} \nonumber \\ \mathrm{subject\ to} & & & \sum_{e \in \delta^{+}(v)} x_{e} = \sum_{e \in \delta^{-}(v)} x_{e} & (v \in V(G) \setminus \{s, t\}) \nonumber \\ & & & x_{e} \le u(e) & (e \in E(G)) \nonumber \\ & & & x_{e} \ge 0 & (e \in E(G)) \nonumber \end{align}\]

Definition 8.4

\[\begin{eqnarray} \overleftarrow{e} & := & (w, u) \nonumber \\ \overleftrightarrow{G} & := & (V(G), E(G) \sqcup \{\overleftarrow{e} \mid e \in E(G)\}) . \end{eqnarray}\]

Note that if $e := (u, w), e^{\prime}:= (w, u) \in E(G)$, then $\overleftarrow{e}, \overleftarrow{e^{\prime}} \in E(\overleftrightarrow{G})$ are parallel edges.

Resicual capacities $u_{f}: E(\overleftrightarrow{G}) \rightarrow \mathbb{R}_{\ge 0}$ is defined as

\[u_{f}(e) := \begin{cases} u(e) - f(e) & (e \in E(G)) \\ f(e) & \text{otherwise} \end{cases} .\]

The residual graph $G_{f}$ is defined as

\[G_{f} := ( V(G), \{e \in E(\overleftrightarrow{G}) \mid u_{f}(e) > 0\} ) .\]

$f^{\prime}$ is said to argment $f$ along $P$ by $\gamma$ if

\[e \in E(P), \ f^{\prime}(e) := \begin{cases} f(e) + \gamma, & (e \in E(G)) \\ f(e) - \gamma & (e = \overleftarrow{v} \text{ for some } v \in E(G)) \end{cases} .\]

$s$-$t$-path in the residual graph $G_{f}$ is called $f$-augmenting path.

Reference