Hamiltonian
\[\sigma_{1,1}(G) := \min \{ d_{G}(x) + d_{G}(y) \mid x \in X, y \in Y, (x,y) \notin E(G) \} .\]Let
\[\Delta(\]Theorem
- $X, Y$,
- vertexes
- $X \cap Y \neq \emptyset$
- $G[X, Y]$,
- bipartite graph
- $|X| = |Y| = n \ge 3$,
- $\sigma_{1, 1}(G) \ge n + 1$,
For all $u \in V(G)$ and $k \in \mathbb{N}$ $3 \le k \le n$, there is a cycle of $u$ whose length $2k$.
proof
$\Box$
Theorem
proof
$\Box$