Euclidean Geometry
Definition Inner Product
- $a, b \in \mathbb{R}^{n}$,
Definition Cross Product
- $a, b \in \mathbb{R}^{3}$
where $n$ is a unit vector perpendicular to the plane containing $a$ and $b$.
Definition Outer Product
- $a \in \mathbb{R}^{m}$,
- $b \in \mathbb{R}^{n}$,
Definition Exterior Product
- $a, b \in \mathbb{R}^{n}$
where $e_{i} \wedge e_{j} = -e_{j} \wedge e_{i}$.
Example 1
- $a \in \mathbb{R}^{2}$,
- $b \in \mathbb{R}^{2}$,
- $e_{1}, e_{2}$
- basis
Example 2
- $a \in \mathbb{R}^{3}$,
- $b \in \mathbb{R}^{3}$,
- $e_{1}, e_{2}, e_{3}$
- basis
2-d vectors
- $a, b, c, d \in \mathbb{R}^{2}$,
(1) $a$ and $b$ are perpendicular if
\[\langle a, b \rangle = a_{1}b_{1} + a_{2}b_{2} = 0.\](2) $a$ and $b$ are parallel if
\[a \times b = a_{1}b_{2} - a_{2}b_{1} = 0 .\](4) $c$ is on a line which contains $a$ and $b$ if
\[(b - a) \times (c - a) = (b_{1} - a_{1})(c_{2} - a_{2}) - (b_{2} - a_{2})(c_{1} - a_{1}) = 0 .\](5) $c$ is on a line segment $b - a$ if
\[(b - a) \times (c - a) = (b_{1} - a_{1})(c_{2} - a_{2}) - (b_{2} - a_{2})(c_{1} - a_{1}) = 0\]and
\[\langle a - c, b - c \rangle \le 0 .\](7) The distance between the line $b - a$ and a point $c$ is given by
\[\begin{eqnarray} \norm{c - a} |\sin(\theta)| & = & \frac{ (b - a) \times (c - a) }{ \norm{x} } \nonumber \end{eqnarray}\](8) The minimum distance between the line segment $b - a$ and a point $c$ is given by
\[\begin{cases} \frac{ (b - a) \times (c - a) }{ \norm{x} } & (\langle a - c, b - c \rangle \neq 0) \\ c - a & (\text{otherwise}) \end{cases}\](9) Two line seguments $b -a$ and $d - c$ are interesected if
\[\begin{eqnarray} (b - a) \times (c - a) (b - a) \times (d - a) & < & 0, \nonumber \\ (d - c) \times (a - c) (d - c) \times (b - c) & < &0. \nonumber \end{eqnarray}\](10) The intersection of two line seguments $b - a$ and $d - c$ is given by
\[\begin{eqnarray} a + \frac{ (d - c) \times (c - a) }{ (d - c) \times (b - a) } (b - a) & = & a + \frac{ (d_{1} - c_{1}) (c_{2} - a_{2}) - (d_{2} - c_{2}) (c_{1} - a_{1}) }{ (d_{1} - c_{1}) (b_{2} - a_{2}) - (d_{2} - c_{2}) (b_{1} - a_{1}) } (b - a) . \end{eqnarray}\]Note that the equation cannot detect the case where the both lines are in parallel. Indeed, if $(b - a)$ and $(d - c)$ are in parallel,
\[(b - a) \times (d - c) = 0 .\]Translation
Let $f(x) := a x + b$. The line which shifts $f(x)$ $m$ in a direction parallel to $f(x)$. Let $g(x)$ be the line. $g(x)$ has the same slope so $g(x) = ax + c$. There is $n$ such that
\[ax + c = a(x - n) + b .\]By rearranging the equation
\[n = \frac{ b - c }{ a } .\]The similarilty of right triangles implies
\[m:(b - c) = l:n\]That is
\[l = \frac{ m n }{ (b - c) } = \frac{ m }{ a } .\]By Pythagorean theorem,
\[\begin{eqnarray} & & n^{2} = l^{2} + m^{2} \nonumber \\ & \Leftrightarrow & n^{2} = \left( \frac{ m }{ a } \right)^{2} + m^{2} \nonumber \\ & \Leftrightarrow & n^{2} = \frac{ m^{2} + a^{2}m^{2} }{ a^{2} } \nonumber \\ & \Leftrightarrow & n & = & \frac{ m\sqrt{1 + a^{2}} }{ a } \nonumber \end{eqnarray}\]Hence
\[\begin{eqnarray} & & \frac{(b - c)}{a} = \frac{ m\sqrt{1 + a^{2}} }{ a } \nonumber \\ & \Leftrightarrow & c = b - m\sqrt{1 + a^{2}} \nonumber \end{eqnarray}\]then
\[g(x) = ax + b - m\sqrt{1 + a^{2}} .\]Reference
- https://en.wikipedia.org/wiki/Outer_product
- https://en.wikipedia.org/wiki/Cross_product
- https://en.wikipedia.org/wiki/Exterior_algebra