View on GitHub

memo

Rademacher Distribution

Rademacher Distribution

Discrete distribution.

$\mathrm{Rad}(k)$ is a p.d.f. of Rademacher distribution,

\[\begin{eqnarray} \mathrm{Rad}(k) & := & \begin{cases} \frac{1}{2} & k = \pm \\ 0 & \text{otherwise} \end{cases} \nonumber \\ & = & \frac{1}{2} \left( \delta_{k-1} + \delta_{k+1} \right) \nonumber \end{eqnarray} .\]

where $\delta_{a}$ is dirac delta function

Proposition1.

Then

$(\phi_{n})$ and \((r_{n}| \phi_{n} |)_{n \in \mathbb{N}}\) are identically distribuited.

proof.

For all $n \in \mathbb{N}$, and all borrel set $B$,

\[\begin{eqnarray} P(r_{n}|\phi_{n}| \in B) & = & P(r_{n} = 1, \phi_{n} \ge 0, \phi_{n} \in B) + P(r_{n} = 1, \phi_{n} < 0, \phi_{n} \in -B) \nonumber \\ & & + P(r_{n} = -1, \phi_{n} \ge 0, \phi_{n} \in -B) + P(r_{n} = -1, \phi_{n} < 0, \phi_{n} \in B) \nonumber \\ & = & \frac{1}{2} P(\phi_{n} \ge 0, \phi_{n} \in B) + \frac{1}{2} P(\phi_{n} < 0, \phi_{n} \in -B) \nonumber \\ & & + \frac{1}{2} P(\phi_{n} \ge 0, \phi_{n} \in -B) + \frac{1}{2} P(\phi_{n} < 0, \phi_{n} \in B) \quad (\because \text{independence}) \nonumber \\ & = & P(\phi_{n} \ge 0, \phi_{n} \in B) + P(\phi_{n} < 0, \phi_{n} \in -B) \nonumber \\ & & P(\phi_{n} \in B) \nonumber \end{eqnarray}\]
$\Box$

Definition. Rademacher average

\[R_{n}(A) := \mathrm{E} \left[ \sup_{a \in A} \frac{1}{n} \sum_{i=1}^{n} r_{i} a_{i} \right]\]

is called Randemacher average.

Proposition 2

Then

\[R_{n}(A) = \mathrm{E} \left[ \sup_{a \in A} \frac{1}{n} \left| \sum_{i=1}^{n} r_{i} a_{i} \right| \right]\]

proof

$\Box$

Proposition 3

\[\begin{eqnarray} R_{n}(A \cup B) & \le & R_{n}(A) + R_{n}(B) \\ R_{n}(cA) & = & |c|R_{n}(A) \\ R_{n}(A + B) & \le & R_{n}(A) + R_{n}(B) \end{eqnarray}\]

proof

$\Box$

lemma 4

\[\forall \lambda > 0, \ 1 \le i \le N, \ \mathrm{E} \left[ e^{\lambda X_{i}} \right] \le e^{\lambda^{2}\sigma^{2}/2} .\]

Then

\[\begin{eqnarray} \mathrm{E} \left[ \max_{i = 1, \ldots, N} X_{i} \right] \le \sigma \sqrt{ 2 \ln N } \end{eqnarray}\]

proof

By Jensen’s inequality, for all $\lambda > 0$,

\[\begin{eqnarray} \exp \left( \lambda \mathrm{E} \left[ \max_{i=1,\ldots, N} X_{i} \right] \right) & \le & \mathrm{E} \left[ \exp \left( \lambda \max_{i=1,\ldots, N} X_{i} \right) \right] \quad (\because \text{Jensen's inequality}) \nonumber \\ & = & \mathrm{E} \left[ \max_{i=1,\ldots, N} \exp \left( \lambda X_{i} \right) \right] \nonumber \\ & \le & \sum_{i=1}^{N} \mathrm{E} \left[ \exp \left( \lambda X_{i} \right) \right] \nonumber \\ & \le & N \exp \left( \lambda^{2} \sigma^{2} / 2 \right) \quad (\because \text{assumption}) \nonumber \\ & = & \exp \left( \ln N + \lambda^{2} \sigma^{2} / 2 \right) \nonumber \end{eqnarray}\]

Thus,

\[\begin{eqnarray} \mathrm{E} \left[ \max_{i = 1, \ldots, N} X_{i} \right] & \le & \frac{ \ln N }{ \lambda } + \frac{ \lambda \sigma^{2} }{ 2 } . \nonumber \end{eqnarray}\]

In particular, taking $\lambda := \sqrt{2 \ln N / \sigma^{2}}$,

\[\begin{eqnarray} \mathrm{E} \left[ \max_{i = 1, \ldots, N} X_{i} \right] & \le & \frac{ \sqrt{\ln N} \sigma }{ \sqrt{2} } + \frac{ \sigma \sqrt{\ln N} }{ \sqrt{2} } \nonumber & = & \sqrt{\ln N} \sigma \sqrt{2} \nonumber . \end{eqnarray}\]
$\Box$

Proposition 5

\[\begin{eqnarray} R_{n}(A) & \le & \max_{j = 1, \ldots, N} \| a_{j} \|_{1} \frac{ \sqrt{2 \log N} }{ n } \nonumber \\ R_{n}(A) & \le & \max_{j = 1, \ldots, N} \| a_{j} \|_{2} \frac{ \sqrt{2 \log N} }{ \sqrt{n} } \end{eqnarray}\]

proof

Let

\[X_{j} := \frac{1}{n} \sum_{i=1}^{n} r_{i}a_{j, i} \quad (j \in = 1, \ldots, N) .\]

It’s easy to confirm that \(X_{j} \in [\underline{L}_{j}, \bar{L}_{j}]\) almost surely where

\[\underline{L}_{j} := - \frac{ \| a_{j} \|_{2} }{ \sqrt{n} } , \ \bar{L}_{j} := -\underline{L}_{j} .\]

Indeed,

\[\begin{eqnarray} \frac{1}{n} \sum_{i=1}^{n} r_{i}a_{j, i} & \le & \frac{1}{n} \sum_{i=1}^{n} | a_{j, i} | \nonumber \\ & = & \frac{1}{n} \| a_{j} \|_{1} \nonumber \\ & \le & \frac{1}{\sqrt{n}} \| a_{j} \|_{2} . \nonumber \end{eqnarray}\]

Moreover, since $r_{j}$ is an I.I.D sequence, $X_{j}$ satisfies

\[\begin{eqnarray} \mathrm{E} \left[ X_{j} \right] = 0 . \end{eqnarray}\]

By Hoeffding inequality, we have for all $j = 1, \ldots, n$, $\lambda > 0$,

\[\begin{eqnarray} \mathrm{E} \left[ e^{-\lambda X_{j}} \right] & \le & \exp \left( \mathrm{E} \left[ -\lambda X_{j} \right] + \frac{ \lambda^{2}(\bar{L}_{j} - \underline{L}_{j})^{2} }{ 8 } \right) \nonumber \\ & = & \exp \left( \frac{ \lambda^{2} \| a_{j} \|_{1}^{2} }{ 2n^{2} } \right) \nonumber \\ & \le & \exp \left( \frac{ \lambda^{2} \sigma^{2} }{ 2 } \right) \nonumber \\ \sigma & := & \frac{ \max_{j = 1, \ldots, N} \| a_{j} \|_{1} }{ n } . \nonumber \end{eqnarray}\]

Now we can apply lemma 4,

\[\begin{eqnarray} R_{n}(A) & = & \mathrm{E} \left[ \max_{j = 1, \ldots, N} X_{j} \right] \nonumber \\ & \le & \sigma \sqrt{2 \ln N} \quad (\because \text{lemma}) \nonumber \\ & = & \max_{j = 1, \ldots, N} \| a_{j} \|_{1} \frac{ \sqrt{2 \ln N} }{ n } \end{eqnarray}\]

For the other inequality, we know

\[\begin{eqnarray} \| a_{j} \|_{1} & \le & \sqrt{n} \| a_{j} \|_{2} . \nonumber \end{eqnarray}\]
$\Box$

Reference