Differentiation
- \(\|
\|\),
- euclid norm
- $L(\mathbb{R}^{n}, \mathbb{R}^{m})$,
- a set of $n\times m$-matrix
- $E \subseteq \mathbb{R}^{n}$,
- open subset
- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$,
- $x_{0} \in \mathbb{R}^{n}$,
$f$ is said to be differentialble at $x_{0}$ if
\[\begin{eqnarray} \exists A \in L(\mathbb{R}^{n}, \mathbb{R}^{m}) \text{ s.t. } \lim_{h \rightarrow 0} \frac{ \| f(x_{0} + h) - f(x_{0}) - Ah \| }{ \| h \| } = 0 \label{differentiation_definition} \end{eqnarray} .\]We write
\[f^{\prime}(x_{0}) = A .\]$f$ is said to be differentiable in $E$ if $f$ is differentialble at every $x \in E$.
Theorem 1. uniquness
- $A_{1} \in L(\mathbb{R}^{n}, \mathbb{R}^{m})$,
- satisfy $\eqref{differentiation_definition}$
- $A_{2} \in L(\mathbb{R}^{n}, \mathbb{R}^{m})$,
- satisfy $\eqref{differentiation_definition}$
Then $A_{1} = A_{2}$.
proof
Let $B := A_{1} - A_{2}$.
\[\begin{eqnarray} \| Bh \| & = & \| - ( f(x + h) + f(x) - A_{1}h ) + f(x + h) + f(x) - A_{2}h \| \nonumber \\ & \le & \| f(x + h) - f(h) - A_{1}h \| + \| f(x + h) - f(h) - A_{2}h \| \nonumber \end{eqnarray}\]Thus, for $h\neq0$,
\[\frac{ \| Bh \| }{ \| h \| } \rightarrow 0 \quad (h \rightarrow 0) .\]On the other hand, let $h \neq 0$ be fixed.
\[\frac{ \| Bh \| }{ \| h \| } = \frac{ \| B(th) \| }{ \| th \| } \quad (t \rightarrow 0) .\]Left hand side of the equation does not depend on $t$. Hence
\[h \in \mathbb{R}^{n}, \ Bh = 0 .\]This implies $B = 0$.
Remarks
\(\eqref{differentiation_definition}\) is equivalent to the condition
\[f(x + h) - f(x) = f^{\prime}(x)h + r(h) .\]where the remainder $r(h)$ satisfies
\[\lim_{h \rightarrow 0} \frac{ \| r(h) \| }{ \| h \| } = 0 .\]Theorem 2
- $E \subset \mathbb{R}^{n}$,
- open subset
- $x_{0} \in E$,
- $E^{\prime} \subseteq f(E)$,
- open subset
is differentiable at $x_{0}$, and
\[F^{\prime}(x_{0}) := g^{\prime}(f(x_{0})) f^{\prime}(x_{0}) .\]proof
Let $y_{0} := f(x_{0})$, $A := f^{\prime}(x_{0})$, $B := g^{\prime}(y_{0})$.
\[\begin{eqnarray} u(h) & := & f(x_{0} + h) - f(x_{0}) - Ah \end{eqnarray}\]Partial derivatives
- $E \subseteq \mathbb{R}^{n}$,
- open subset
- \(\{e_{1}, \ldots, e_{n}\}\),
- standard base of $\mathbb{R}^{n}$
- \(\{u_{1}, \ldots, u_{n}\}\),
- standard base of $\mathbb{R}^{m}$
- $f:E \rightarrow \mathbb{R}^{m}$,
The components of $f$ are the real functions $f_{1}, \ldots, f_{m}$ defined by
\[f_{i}(x) := \langle f(x), u_{i} \rangle \quad (x \in E) .\]or, equivalently
\[f(x) = \sum_{i=1}^{m} f_{i}(x) u_{i} .\]Definition
\[(D_{j}f_{i})(x) = \lim_{t \rightarrow 0} \frac{ f_{i}(x + te_{j}) - f_{i}(x) }{ t } ,\]Theorem
- $E \subseteq \mathbb{R}^{n}$,
- open subset
- $x \in E$,
- $f: E \rightarrow \mathbb{R}^{m}$,
- differentialble at a $x$,
proof
Let $j$ be fixed. Since $f$ is differentiable at $x$,
\[\begin{eqnarray} f(x + te_{j}) - f(x) & = & f^{\prime}(x) (te_{j}) + r(te_{j}) \nonumber \\ \frac{ \| r(te_{j}) \| }{ t } & \rightarrow & 0 \quad (t \rightarrow 0) \nonumber \end{eqnarray}\] \[\begin{eqnarray} & & \frac{ f(x + te_{j}) - f(x) }{ t } = f^{\prime}(x) (e_{j}) + \frac{ r(te_{j}) }{ t } \nonumber \\ & \Rightarrow & \lim_{t \rightarrow 0} \frac{ f(x + te_{j}) - f(x) }{ t } = f^{\prime}(x) e_{j} \nonumber \\ & \Rightarrow & \lim_{t \rightarrow 0} \sum_{i=1}^{m} \frac{ f_{i}(x + te_{j}) - f_{i}(x) }{ t } u_{i} = f^{\prime}(x) e_{j} \nonumber \\ & \Rightarrow & \sum_{i=1}^{m} (D_{j}f_{i})(x) u_{i} = f^{\prime}(x) e_{j} . \nonumber \end{eqnarray}\]Definition.
- $f: E \rightarrow \mathbb{R}^{m}$,
The gradient of $f$ at $x$ defiend by
\[(\nabla f)(x) := \sum_{i=1}^{n} (D_{i}f)(x) e_{i}\]- $(a, b) \subseteq \mathbb{R}$,
- $E \subseteq \mathbb{R}^{n}$,
- $\gamma: (a, b) \rightarrow E$,
- differentialble in $E$
- $f: E \rightarrow \mathbb{R}$,
- differentialbe
- $g(t) := f(\gamma(t))$.
- $g: (a, b) \rightarrow \mathbb{R}$,
Reference
Walter Rudin. Principle of Mathematical analysis