View on GitHub

memo

Differentiation

Differentiation

$f$ is said to be differentialble at $x_{0}$ if

\[\begin{eqnarray} \exists A \in L(\mathbb{R}^{n}, \mathbb{R}^{m}) \text{ s.t. } \lim_{h \rightarrow 0} \frac{ \| f(x_{0} + h) - f(x_{0}) - Ah \| }{ \| h \| } = 0 \label{differentiation_definition} \end{eqnarray} .\]

We write

\[f^{\prime}(x_{0}) = A .\]

$f$ is said to be differentiable in $E$ if $f$ is differentialble at every $x \in E$.

Theorem 1. uniquness

Then $A_{1} = A_{2}$.

proof

Let $B := A_{1} - A_{2}$.

\[\begin{eqnarray} \| Bh \| & = & \| - ( f(x + h) + f(x) - A_{1}h ) + f(x + h) + f(x) - A_{2}h \| \nonumber \\ & \le & \| f(x + h) - f(h) - A_{1}h \| + \| f(x + h) - f(h) - A_{2}h \| \nonumber \end{eqnarray}\]

Thus, for $h\neq0$,

\[\frac{ \| Bh \| }{ \| h \| } \rightarrow 0 \quad (h \rightarrow 0) .\]

On the other hand, let $h \neq 0$ be fixed.

\[\frac{ \| Bh \| }{ \| h \| } = \frac{ \| B(th) \| }{ \| th \| } \quad (t \rightarrow 0) .\]

Left hand side of the equation does not depend on $t$. Hence

\[h \in \mathbb{R}^{n}, \ Bh = 0 .\]

This implies $B = 0$.

$\Box$

Remarks

\(\eqref{differentiation_definition}\) is equivalent to the condition

\[f(x + h) - f(x) = f^{\prime}(x)h + r(h) .\]

where the remainder $r(h)$ satisfies

\[\lim_{h \rightarrow 0} \frac{ \| r(h) \| }{ \| h \| } = 0 .\]

Theorem 2

\[F(x) := g(f(x))\]

is differentiable at $x_{0}$, and

\[F^{\prime}(x_{0}) := g^{\prime}(f(x_{0})) f^{\prime}(x_{0}) .\]

proof

Let $y_{0} := f(x_{0})$, $A := f^{\prime}(x_{0})$, $B := g^{\prime}(y_{0})$.

\[\begin{eqnarray} u(h) & := & f(x_{0} + h) - f(x_{0}) - Ah \end{eqnarray}\]
$\Box$

Partial derivatives

The components of $f$ are the real functions $f_{1}, \ldots, f_{m}$ defined by

\[f_{i}(x) := \langle f(x), u_{i} \rangle \quad (x \in E) .\]

or, equivalently

\[f(x) = \sum_{i=1}^{m} f_{i}(x) u_{i} .\]

Definition

\[(D_{j}f_{i})(x) = \lim_{t \rightarrow 0} \frac{ f_{i}(x + te_{j}) - f_{i}(x) }{ t } ,\]

Theorem

\[\forall j \in \{1, \ldots, n\}, \ f^{\prime}(x) e_{j} = \sum_{i=1}^{m} (D_{j}f_{i})(x) u_{i} .\]

proof

Let $j$ be fixed. Since $f$ is differentiable at $x$,

\[\begin{eqnarray} f(x + te_{j}) - f(x) & = & f^{\prime}(x) (te_{j}) + r(te_{j}) \nonumber \\ \frac{ \| r(te_{j}) \| }{ t } & \rightarrow & 0 \quad (t \rightarrow 0) \nonumber \end{eqnarray}\] \[\begin{eqnarray} & & \frac{ f(x + te_{j}) - f(x) }{ t } = f^{\prime}(x) (e_{j}) + \frac{ r(te_{j}) }{ t } \nonumber \\ & \Rightarrow & \lim_{t \rightarrow 0} \frac{ f(x + te_{j}) - f(x) }{ t } = f^{\prime}(x) e_{j} \nonumber \\ & \Rightarrow & \lim_{t \rightarrow 0} \sum_{i=1}^{m} \frac{ f_{i}(x + te_{j}) - f_{i}(x) }{ t } u_{i} = f^{\prime}(x) e_{j} \nonumber \\ & \Rightarrow & \sum_{i=1}^{m} (D_{j}f_{i})(x) u_{i} = f^{\prime}(x) e_{j} . \nonumber \end{eqnarray}\]
$\Box$
\[f^{\prime}(x) = \left( \begin{array}{ccc} (D_{1}f_{1})(x) & \cdots & (D_{n}f_{1})(x) \\ \vdots & \ddots & \vdots \\ (D_{1}f_{m})(x) & \cdots & (D_{n}f_{m})(x) \end{array} \right)\]

Definition.

The gradient of $f$ at $x$ defiend by

\[(\nabla f)(x) := \sum_{i=1}^{n} (D_{i}f)(x) e_{i}\]
\[\begin{eqnarray} g^{\prime}(t) & = & f^{\prime}(\gamma(t)) \gamma^{t}(t) \nonumber \\ & = & \sum_{i=1}^{n} (D_{i}f)(\gamma(t)) \gamma^{t}(t) \nonumber \\ & = & \langle (\nabla f)(\gamma(t)), \gamma^{t}(t) \rangle . \end{eqnarray}\]

Reference

Walter Rudin. Principle of Mathematical analysis