Differential Geometry
Definition
■
Definition
- $M$,
- manifold
- $N$,
- manifold
- $T_{p}M$,
- tangent space at $p$
- $v \in T_{p}M$,
- tanvent vector at $p$
- $v:C^{\infty}(M) \rightarrow \mathbb{R}$,
- linear map
- $T_{p}^{*}M$,
- cotangent space at $p$
- $\omega \in T_{p}^{*}M$,
- cotangent vector at $p$
- $\omega:T_{p}M \rightarrow \mathbb{R}$,
- linear map
- $TM$,
- tangent bundle
- $T^{*}M$,
- cotangent bundle
- $(p, v) \in TM$,
- $p \in M$, $v \in T_{p}M$,
- $(p, \omega) \in T^{*}M$,
- $p \in M$, $\omega \in T_{p}^{*}M$,
- $F: M \rightarrow N$,
- smooth map
- $dF_{p}: T_{p}M \rightarrow T_{F(p)}{N}$
- differential of $F$ at $p$
- $X: M \rightarrow TM$,
- vector field
- $p \in M \mapto X_{p} TM$,
- vector bundle
- coframe
- frame
■
Definition
\[\begin{eqnarray} \left. \frac{\partial}{\partial x^{1}} \right|_{\phi(p)}, \ldots, \left. \frac{\partial}{\partial x^{n}} \right|_{\phi(p)}, \end{eqnarray}\]form a basis for $T_{\phi(p)} \mathbb{R}^{n}$.
Let
\[\begin{eqnarray} \left. \frac{\partial}{\partial x^{i}} \right|_{p} & := & (d \phi_{p})^{-1} \left( \left. \frac{\partial}{\partial x^{n}} \right|_{\phi(p)} \right) \nonumber \\ & = & d(\phi^{-1})_{\phi(p)} \left( \left. \frac{\partial}{\partial x^{n}} \right|_{\phi(p)} \right) \nonumber \end{eqnarray}\]form a basis for $T_{p}M$.
■