View on GitHub

memo

Differential Geometry

Differential Geometry

Definition

Definition

\[\begin{eqnarray} TM & := & \sqcup_{p \in M}T_{p}M \nonumber \\ & = & \sqcup_{p \in M} \{p\} \times T_{p}M \\ & \cong & \sqcup_{p \in M} \{p\} \times \mathbb{R}^{n} \end{eqnarray} .\] \[\begin{eqnarray} T^{*}M & := & \sqcup_{p \in M}T_{p}^{*}M \nonumber \\ & = & \sqcup_{p \in M} \{p\} \times T_{p}^{*}M \end{eqnarray} .\] \[f \in C^{\infty}(N), \ dF_{p}(v)(f) := v(f \circ F) .\] \[\begin{eqnarray} X_{p} & = & X^{i}(p) \left. \frac{\partial}{\partial x^{i}} \right|_{p} \nonumber \\ \pi \circ X & = & \mathrm{Id}_{M} \nonumber . \end{eqnarray}\]

Definition

\[\begin{eqnarray} \left. \frac{\partial}{\partial x^{1}} \right|_{\phi(p)}, \ldots, \left. \frac{\partial}{\partial x^{n}} \right|_{\phi(p)}, \end{eqnarray}\]

form a basis for $T_{\phi(p)} \mathbb{R}^{n}$.

Let

\[\begin{eqnarray} \left. \frac{\partial}{\partial x^{i}} \right|_{p} & := & (d \phi_{p})^{-1} \left( \left. \frac{\partial}{\partial x^{n}} \right|_{\phi(p)} \right) \nonumber \\ & = & d(\phi^{-1})_{\phi(p)} \left( \left. \frac{\partial}{\partial x^{n}} \right|_{\phi(p)} \right) \nonumber \end{eqnarray}\]

form a basis for $T_{p}M$.

Reference