View on GitHub

memo

Congruence

Congruence

合同式について。

Proposition(properties)

性質

\[b \equiv a\ (\mathrm{mod}\ m),\] \[a \equiv c\ (\mathrm{mod}\ m)\] \[a + a^{\prime} \equiv b + b^{\prime}\ (\mathrm{mod}\ m), a - a^{\prime} \equiv b - b^{\prime}\ (\mathrm{mod}\ m),\] \[aa^{\prime} \equiv bb^{\prime}\ (\mathrm{mod}\ m),\] \[a \equiv b + mk\ (\mathrm{mod}\ m)\] \[a \equiv b\ (\mathrm{mod}\ m)\] \[ak \equiv bk\ (\mathrm{mod}\ mk)\] \[a_{1} \equiv b_{1}\ (\mathrm{mod}\ m)\] \[a \equiv b\ (\mathrm{mod}\ d)\] \[a \equiv b\ (\mathrm{mod}\ m)\] \[(x + y)^{p} \equiv x^{p} + y^{p}\ (\mathrm{mod}\ p)\] \[(x_{1} + \ldots + x_{n})^{p} \equiv x_{1}^{p} + \cdots + x_{n}^{p}\ (\mathrm{mod}\ p)\] \[\left( \begin{array}{c} p - 1 \\ a \end{array} \right) \equiv (-1)^{a} \ (\mathrm{mod}\ p)\]

proof.

$\Box$